Question

In: Chemistry

The equilibrium constant KP for CCl4(g) f15g2a33g1.jpgC(s) + 2 Cl2(g) is 0.76 at 700 K. What...

The equilibrium constant KP for CCl4(g) f15g2a33g1.jpgC(s) + 2 Cl2(g) is 0.76 at 700 K. What percentage (%) of CCl4 is converted into C and Cl2 when a flask charged with 3.00 atm of CCl4 reaches equilibrium at 700 K?

Solutions

Expert Solution

                                    CCl4 (g) <==>   C(s)    +     2 Cl2 (g)

Initial:                          3.00                                 0

change:                        -x                                 + 2x

Equilibrium:               3.00 - x                                 2x       

or, 2.28 - 0.76x = 4x2

solving the quadratic equation for x, we get:

x = 0.67 atm

Hence, equilibrium pressure of CCl4 = 3.00 - 0.67 = 2.33 atm

% of CCl4 converted into C and Cl2 is = (0.67/3.00)x100 = 22.33 %


Related Solutions

The equilibrium constant, Kp, for the following reaction is 2.01 at 500 K: PCl3(g) + Cl2(g)...
The equilibrium constant, Kp, for the following reaction is 2.01 at 500 K: PCl3(g) + Cl2(g) <----->PCl5(g) Calculate the equilibrium partial pressures of all species when PCl3 and Cl2, each at an intitial partial pressure of 1.56 atm, are introduced into an evacuated vessel at 500 K. PPCl3 = atm PCl2 = atm PPCl5 = atm
The equilibrium constant, Kp, for the following reaction is 1.57 at 600 K: CO(g) + Cl2(g)...
The equilibrium constant, Kp, for the following reaction is 1.57 at 600 K: CO(g) + Cl2(g) COCl2(g) Calculate the equilibrium partial pressures of all species when CO and Cl2, each at an intitial partial pressure of 1.65 atm, are introduced into an evacuated vessel at 600 K. PCO = ______ atm PCl2= _______ atm PCOCl2 = _______ atm
The equilibrium constant, Kp, for the following reaction is 2.01 at 500 K: PCl3(g) + Cl2(g)...
The equilibrium constant, Kp, for the following reaction is 2.01 at 500 K: PCl3(g) + Cl2(g) <<<----->>PCl5(g) Calculate the equilibrium partial pressures of all species when PCl3 and Cl2, each at an intitial partial pressure of 1.01 atm, are introduced into an evacuated vessel at 500 K. PPCl3 = atm PCl2 = atm PPCl5 = atm
The equilibrum constant Kc is 0.01323 for the reaction: CCl4 (g) <----> C(s) + 2 Cl2...
The equilibrum constant Kc is 0.01323 for the reaction: CCl4 (g) <----> C(s) + 2 Cl2 (g) At 300k a 5L flask originally contained 0.0828M of CCl4, 0.0444 M of C and 0.0546M of Cl2. Determine the concentration of Cl2 when equilibrium is reached.
At 700 K, CCl4 decomposes to carbon and chlorine. The Kp value for the decomposition is...
At 700 K, CCl4 decomposes to carbon and chlorine. The Kp value for the decomposition is 0.76. Find the starting pressure of CCl4 at this temperature that produces a total pressure of 1.7 atm at equilibrium.
1.For the reaction, PCl5(g) <-----> PCl3(g) + Cl2(g)          Kp = 24.6 at 500 K calculate the equilibrium...
1.For the reaction, PCl5(g) <-----> PCl3(g) + Cl2(g)          Kp = 24.6 at 500 K calculate the equilibrium partial pressures of the reactants and products if the initial pressures are PPCl5 = 0.610 atm, PPCl3 = 0.400 atm and PCl2 = 0.000 atm. PPCl5 = PPCl3 = PCl2 = 2. H2O(g) + Cl2O(g) <-----> 2HClO(g)          Kc = 0.14 at 298.15 K calculate the equilibrium concentrations of the reactants and products if the initial concentrations are [H2O(g)] = 0.00482 mol L-1, [Cl2O(g)] = 0.00482...
The equilibrium constant K=0.36 for the reaction PCl5 (g)  PCl3 (g) +Cl2 (g). (a) Given...
The equilibrium constant K=0.36 for the reaction PCl5 (g)  PCl3 (g) +Cl2 (g). (a) Given that 2.0 g of PCl5 was initially placed in the reaction chamber of volume 250 cm3, determine the molar concentration in the mixture at equilibrium. (b) What is the percentage of PCl5 decomposed.
1)The equilibrium constant, Kp, for the following reaction is 0.497 at 500 K: PCl5(g) The equilibrium...
1)The equilibrium constant, Kp, for the following reaction is 0.497 at 500 K: PCl5(g) The equilibrium constant, Kp, for the following reaction is 0.497 at 500 K: PCl5(g) <------ ------> PCl3(g) + Cl2(g) Calculate the equilibrium partial pressures of all species when PCl5(g) is introduced into an evacuated flask at a pressure of 1.14 atm at 500 K. PPCl5 = atm PPCl3 = atm PCl2 = atm 2) The equilibrium constant, Kp, for the following reaction is 55.6 at 698...
Carbon monoxide and chlorine gas react to form phosgene: CO(g)+Cl2(g)⇌COCl2(g) Kp = 3.10 at 700 K...
Carbon monoxide and chlorine gas react to form phosgene: CO(g)+Cl2(g)⇌COCl2(g) Kp = 3.10 at 700 K If a reaction mixture initially contains 345 torr of CO and 452 torr of Cl2, what is the mole fraction of COCl2 when equilibrium is reached? please be sure of your answer its my last attempt
The equilibrium constant  for the reaction CCl4(g) = C(s) + 2Cl2(g) at 700ºC is 0.85. Determine the...
The equilibrium constant  for the reaction CCl4(g) = C(s) + 2Cl2(g) at 700ºC is 0.85. Determine the initial pressure of carbon tetrachloride that will produce a total equilibrium pressure of 2.30 atm at 700ºC.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT