Question

In: Chemistry

At 700 K, CCl4 decomposes to carbon and chlorine. The Kp value for the decomposition is...

At 700 K, CCl4 decomposes to carbon and chlorine. The Kp value for the decomposition is 0.76. Find the starting pressure of CCl4 at this temperature that produces a total pressure of 1.7 atm at equilibrium.

Solutions

Expert Solution

                             CCl4(g)                  C(s) + 2Cl2(g)

Initial                      a                                       0

Equilibrium          a-x                                    2x

Total pressure at equilibrium = a – x + 2x = a + x

Given, Total pressure at equilibrium = 1.7 atm

Therefore,

a = 1.7 – x

Kp = PCl22/PCCl4

0.76 = (2x)2/(a-x) = 4x2/ (1.7 – 2x)

4x2 + 1.52 x – 1.292 = 0

On solving,

x = 0.409

a + x = 1.7 atm

a = 1.7 atm - 0.409 atm = 1.291 atm

Starting pressure of CCl4 = 1.291 atm


Related Solutions

Carbon monoxide and chlorine gas react to form phosgene: CO(g)+Cl2(g)⇌COCl2(g) Kp = 3.10 at 700 K...
Carbon monoxide and chlorine gas react to form phosgene: CO(g)+Cl2(g)⇌COCl2(g) Kp = 3.10 at 700 K If a reaction mixture initially contains 345 torr of CO and 452 torr of Cl2, what is the mole fraction of COCl2 when equilibrium is reached? please be sure of your answer its my last attempt
At 700 K acetaldehyde decomposes in the gas phase to methane and carbon monoxide. The reaction...
At 700 K acetaldehyde decomposes in the gas phase to methane and carbon monoxide. The reaction is: CH3CHO(g)→CH4(g)+CO(g) A sample of CH3CHO is heated to 700 K and the pressure is measured as 0.27 atm before any reaction takes place. The kinetics of the reaction are then followed by measurements of total pressure and these data are obtained: t(s) 0 1000 3000 7000 PTotal (atm) 0.27 0.30 0.34 0.39 Find total pressure after 1.47×104 s .
At 700 K acetaldehyde decomposes in the gas phase to methane and carbon monoxide. The reaction...
At 700 K acetaldehyde decomposes in the gas phase to methane and carbon monoxide. The reaction is: CH3CHO(g)→CH4(g)+CO(g) A sample of CH3CHO is heated to 700 K and the pressure is measured as 0.11 atm before any reaction takes place. The kinetics of the reaction are then followed by measurements of total pressure and these data are obtained: t(s) 0 1000 3000 7000 PTotal (atm) 0.11 0.12 0.12 0.14 Find total pressure after 1.89×104 s . Express your answer to...
At 700 K acetaldehyde decomposes in the gas phase to methane and carbon monoxide. The reaction...
At 700 K acetaldehyde decomposes in the gas phase to methane and carbon monoxide. The reaction is: CH3CHO(g)→CH4(g)+CO(g) A sample of CH3CHO is heated to 700 K and the pressure is measured as 0.47 atm before any reaction takes place. The kinetics of the reaction are then followed by measurements of total pressure and these data are obtained: t(s) 0 1000 3000 7000 PTotal (atm) 0.47 0.55 0.65 0.75 a. Find the rate law. 1. Rate=−ΔPCH3CHOΔt=6.0×10−4s−1PCH3CHO 2. Rate=−ΔPCH3CHOΔt=3.0×10−4s−1PCH3CHO 3. Rate=−ΔPCH3CHOΔt=9.0×10−4atm−1⋅s−1PCH3CHO2...
At 700 K acetaldehyde decomposes in the gas phase to methane and carbon monoxide. The reaction...
At 700 K acetaldehyde decomposes in the gas phase to methane and carbon monoxide. The reaction is: CH3CHO(g)→CH4(g)+CO(g) A sample of CH3CHO is heated to 700 K and the pressure is measured as 0.41 atm before any reaction takes place. The kinetics of the reaction are then followed by measurements of total pressure and these data are obtained: t(s) 0 1000 3000 7000 PTotal (atm) 0.41 0.47 0.56 0.64 Find total pressure after 1.65×104 s .
The equilibrium constant KP for CCl4(g) f15g2a33g1.jpgC(s) + 2 Cl2(g) is 0.76 at 700 K. What...
The equilibrium constant KP for CCl4(g) f15g2a33g1.jpgC(s) + 2 Cl2(g) is 0.76 at 700 K. What percentage (%) of CCl4 is converted into C and Cl2 when a flask charged with 3.00 atm of CCl4 reaches equilibrium at 700 K?
A) For the gas phase decomposition of hydrogen iodide at 700 K 2 HIH2 + I2...
A) For the gas phase decomposition of hydrogen iodide at 700 K 2 HIH2 + I2 the average rate of disappearance of HI over the time period from t = 0 s to t = 1446 s is found to be 5.67×10-4 M s-1. The average rate of formation of H2 over the same time period is M s-1. B) The rearrangement of cyclopropane to propene at 500 °C (CH2)3CH3CH=CH2 is first order in (CH2)3 with a rate constant of...
Carbon monoxide reacts with steam to produce carbon dioxide and hydrogen. At 700 K the equilibrium...
Carbon monoxide reacts with steam to produce carbon dioxide and hydrogen. At 700 K the equilibrium constant is 5.10. Calculate the equilibrium concentrations of all species if 1.000 mole of each component (reactants and products) is mixed in a 1.000 L flask. (Note: Be sure to check Q to determine which way the reaction will proceed to come to equilibrium). Please show step by step, I'm lost. Thank you! CO(g) + H2O(g) -> CO2(g) + H2(g)
Calcium carbonate heated up to 700 oC decomposes to calcium oxide and carbon dioxide. CaCO3 --...
Calcium carbonate heated up to 700 oC decomposes to calcium oxide and carbon dioxide. CaCO3 -- CaO + CO2 a. How many moles of carbon dioxide can be generated from 300g of calcium carbonate. b. How many grams of carbon dioxide can be generated from 300g of calcium carbonate.
Carbon disulfide and chlorine react according to the following equation: CS2(g) + 3Cl2(g) S2Cl2(g) + CCl4(g)...
Carbon disulfide and chlorine react according to the following equation: CS2(g) + 3Cl2(g) S2Cl2(g) + CCl4(g) When 2.94 mol of CS2 and 5.60 mol of Cl2 are placed in a 2.00-L container and allowed to come to equilibrium, the mixture is found to contain 0.580 mol of CCl4. How many moles of Cl2 are present at equilibrium?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT