Question

In: Chemistry

The equilibrium constant K=0.36 for the reaction PCl5 (g)  PCl3 (g) +Cl2 (g). (a) Given...

The equilibrium constant K=0.36 for the reaction PCl5 (g)  PCl3 (g) +Cl2 (g). (a) Given that 2.0 g of PCl5 was initially placed in the reaction chamber of volume 250 cm3, determine the molar concentration in the mixture at equilibrium. (b) What is the percentage of PCl5 decomposed.

Solutions

Expert Solution

PCl5 moles = mass / Molar mass of PCl5 = ( 2g) / ( 208.24g/mol) = 0.0096        

volume = 250 cm3 = 250 ml = 0.25L

[PCl5] = ( 0.0096/0.25) = 0.0384 M                 

                              PCl5 (g)    <------>    PCl3 (g)   +   Cl2 (g)

Initial                   0.0384                            0              0

equilibrium         0.0384 -X                          X                   X

Kc = [PCl3] [Cl2] /[PCl5]

0.36 = ( X^2) / ( 0.0384-X)

X^2 + 0.36X - 0.01383 = 0

X = 0.035

at equilibrium [PCl3] =[Cl2] = 0.035M

[PCl5] = 0.0384-0.035 = 0.0034 M

b) % of PCl5 decomposed = 100 x ( PCl5 decomposed (i,e X) / PCl5 initial amount)

( 100 x 0.035/0.0384) = 91.15 %


Related Solutions

9. The equilibrium constant Kc for the reaction PCl3(g) + Cl2(g)   PCl5(g) is 49 at 230°C....
9. The equilibrium constant Kc for the reaction PCl3(g) + Cl2(g)   PCl5(g) is 49 at 230°C. If 0.70 mol of PCl3 is added to 0.70 mol of Cl2 in a 1.00-L reaction vessel at 230°C, what is the concentration of PCl3 when equilibrium has been established? A. 0.049 M B. 0.11 M C. 0.30 M D. 0.59 M E. 0.83 M
The equilibrium constant  for the reaction PCl3(g) + Cl2(g) ------- PCl5(g) equals 49 at 230°C. If 0.367...
The equilibrium constant  for the reaction PCl3(g) + Cl2(g) ------- PCl5(g) equals 49 at 230°C. If 0.367 mol each of phosphorus trichloride and chlorine are added to a 4.00 L reaction vessel, what is the equilibrium composition of the mixture at 230°C?
1.For the reaction, PCl5(g) <-----> PCl3(g) + Cl2(g)          Kp = 24.6 at 500 K calculate the equilibrium...
1.For the reaction, PCl5(g) <-----> PCl3(g) + Cl2(g)          Kp = 24.6 at 500 K calculate the equilibrium partial pressures of the reactants and products if the initial pressures are PPCl5 = 0.610 atm, PPCl3 = 0.400 atm and PCl2 = 0.000 atm. PPCl5 = PPCl3 = PCl2 = 2. H2O(g) + Cl2O(g) <-----> 2HClO(g)          Kc = 0.14 at 298.15 K calculate the equilibrium concentrations of the reactants and products if the initial concentrations are [H2O(g)] = 0.00482 mol L-1, [Cl2O(g)] = 0.00482...
The equilibrium constant, K, for the following reaction is 1.87×10-2 at 511 K. PCl5(g) <--------->>>PCl3(g) +...
The equilibrium constant, K, for the following reaction is 1.87×10-2 at 511 K. PCl5(g) <--------->>>PCl3(g) + Cl2(g) An equilibrium mixture of the three gases in a 13.1 L container at 511 K contains 0.209 M PCl5,   6.24×10-2 M PCl3 and 6.24×10-2 M Cl2. What will be the concentrations of the three gases once equilibrium has been reestablished, if the equilibrium mixture is compressed at constant temperature to a volume of 7.01 L? [PCl5] = M [PCl3] = M [Cl2] =...
The equilibrium constant, K, for the following reaction is 1.42×10-2 at 504 K. PCl5(g) --> PCl3(g)...
The equilibrium constant, K, for the following reaction is 1.42×10-2 at 504 K. PCl5(g) --> PCl3(g) + Cl2(g) An equilibrium mixture of the three gases in a 10.9 L container at 504 K contains 0.279 M PCl5, 6.29×10-2 M PCl3 and 6.29×10-2 M Cl2. What will be the concentrations of the three gases once equilibrium has been reestablished, if the equilibrium mixture is compressed at constant temperature to a volume of 4.95 L? [PCl5] = M [PCl3] = M [Cl2]...
The equilibrium constant, K, for the following reaction is 3.16×10-2 at 525 K. PCl5(g) <----->PCl3(g) +...
The equilibrium constant, K, for the following reaction is 3.16×10-2 at 525 K. PCl5(g) <----->PCl3(g) + Cl2(g) An equilibrium mixture of the three gases in a 4.56 L container at 525 K contains 0.243 M PCl5,   8.77×10-2 M PCl3 and 8.77×10-2 M Cl2. What will be the concentrations of the three gases once equilibrium has been reestablished, if the volume of the container is increased to 10.3 L? [PCl5] = M [PCl3] = M [Cl2] = M
The equilibrium constant, K, for the following reaction is 1.20×10-2 at 500 K. PCl5(g) PCl3(g) +...
The equilibrium constant, K, for the following reaction is 1.20×10-2 at 500 K. PCl5(g) PCl3(g) + Cl2(g) An equilibrium mixture of the three gases in a 1.00 L flask at 500 K contains 0.218 M PCl5, 5.11×10-2 M PCl3 and 5.11×10-2 M Cl2. What will be the concentrations of the three gases once equilibrium has been reestablished, if 3.92×10-2 mol of PCl3(g) is added to the flask? [PCl5] = M [PCl3] = M [Cl2] = M
The equilibrium constant, K, for the following reaction is 1.20×10-2 at 500 K. PCl5(g) PCl3(g) +...
The equilibrium constant, K, for the following reaction is 1.20×10-2 at 500 K. PCl5(g) PCl3(g) + Cl2(g) An equilibrium mixture of the three gases in a 1.00 L flask at 500 K contains 0.200 M PCl5, 4.90×10-2 M PCl3 and 4.90×10-2 M Cl2. What will be the concentrations of the three gases once equilibrium has been reestablished, if 3.12×10-2 mol of Cl2(g) is added to the flask? [PCl5] = [PCl3] = [Cl2] =  
The equilibrium constant, Kp, for the following reaction is 2.01 at 500 K: PCl3(g) + Cl2(g)...
The equilibrium constant, Kp, for the following reaction is 2.01 at 500 K: PCl3(g) + Cl2(g) <----->PCl5(g) Calculate the equilibrium partial pressures of all species when PCl3 and Cl2, each at an intitial partial pressure of 1.56 atm, are introduced into an evacuated vessel at 500 K. PPCl3 = atm PCl2 = atm PPCl5 = atm
The equilibrium constant, Kp, for the following reaction is 2.01 at 500 K: PCl3(g) + Cl2(g)...
The equilibrium constant, Kp, for the following reaction is 2.01 at 500 K: PCl3(g) + Cl2(g) <<<----->>PCl5(g) Calculate the equilibrium partial pressures of all species when PCl3 and Cl2, each at an intitial partial pressure of 1.01 atm, are introduced into an evacuated vessel at 500 K. PPCl3 = atm PCl2 = atm PPCl5 = atm
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT