Question

In: Advanced Math

the matrix A=[-5,1;-21,5] has eigenvalues Г1=-2 and Г2 = 2 the basis of the eigenspace v1=[1,3]...

the matrix A=[-5,1;-21,5] has eigenvalues Г1=-2 and Г2 = 2 the basis of the eigenspace v1=[1,3] v2=[1,7]
find the invertible matrix S and diagonal matrix D such that S^-1 AS=D
S=
D=

Solutions

Expert Solution


Related Solutions

Suppose that a 2 × 2 matrix A has eigenvalues λ = -3 and 4, with...
Suppose that a 2 × 2 matrix A has eigenvalues λ = -3 and 4, with corresponding eigenvectors [1m1]and [7,2], respectively. Find A^2.
Find the characteristic equation and the eigenvalues (and corresponding eigenvectors) of the matrix. 2 −2 5...
Find the characteristic equation and the eigenvalues (and corresponding eigenvectors) of the matrix. 2 −2 5 0 3 −2 0 −1 2 (a) the characteristic equation (b) the eigenvalues (Enter your answers from smallest to largest.) (λ1, λ2, λ3) = the corresponding eigenvectors x1 = x2 = x3 =
find all eigenvalues and eigenvectors of the given matrix A= [1 0 0 2 1 -2...
find all eigenvalues and eigenvectors of the given matrix A= [1 0 0 2 1 -2 3 2 1]
eigenvalues of the matrix A = [1 3 0, 3 ?2 ?1, 0 ?1 1] are...
eigenvalues of the matrix A = [1 3 0, 3 ?2 ?1, 0 ?1 1] are 1, ?4 and 3. express the equation of the surface x^2 ? 2y^2 + z^2 + 6xy ? 2yz = 16. How should i determine the order of the coefficient in the form X^2/A+Y^2/B+Z^2/C=1?
True or False. 1. If the set {v1,v2} is a basis of R^2, then the set...
True or False. 1. If the set {v1,v2} is a basis of R^2, then the set {v1,v1+v2} is also a basis of R^2. 2.If W be a vector space and V1,V2 are subspaces of W, then V1 u V2 is also a subspace of W. V1 u V2 denotes the union of V1 and V2, i.e. the set of vectors which belong to either V1 or V2 (or to both). 3.If W be a vector space and V1,V2 are subspaces...
Find all eigenvalues and their corresponding eigenspaces of the following matrix.
Find all eigenvalues and their corresponding eigenspaces of the following matrix. B=\( \begin{pmatrix}2&-3&1\\ 1&-2&1\\ 1&-3&2\end{pmatrix} \)
Find all eigenvalues and their corresponding eigenspaces of the following matrix.
Find all eigenvalues and their corresponding eigenspaces of the following matrix. A.\( \begin{pmatrix}3&0\\ 1&2\end{pmatrix} \)
Prove: An (n × n) matrix A is not invertible ⇐⇒ one of the eigenvalues of...
Prove: An (n × n) matrix A is not invertible ⇐⇒ one of the eigenvalues of A is λ = 0
The 3 x 3 matrix A has eigenvalues 5 and 4. (a) Write the characteristic polynomial...
The 3 x 3 matrix A has eigenvalues 5 and 4. (a) Write the characteristic polynomial of A. (b) Is A diagonalizable ? Explain your answer. If A is diagonalizable, find an invertible matrix P and diagonal matrix D that diagonalize A. Matrix A : 4 0 -2 2 5 4 0 0 5
Consider the given matrix. −1    2 −5    1 Find the eigenvalues. (Enter your answers...
Consider the given matrix. −1    2 −5    1 Find the eigenvalues. (Enter your answers as a comma-separated list.) λ = 3i,−3i (I got these right) Find the eigenvectors of the matrix. (Enter your answers in order of the corresponding eigenvalues, from smallest to largest by real part, then by imaginary part.) K1 = K2 = I can't seem to get the eigenvectors right.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT