Question

In: Advanced Math

Find all eigenvalues and their corresponding eigenspaces of the following matrix.

Find all eigenvalues and their corresponding eigenspaces of the following matrix. A.\( \begin{pmatrix}3&0\\ 1&2\end{pmatrix} \)

Solutions

Expert Solution

Solution

 A.\( \begin{pmatrix}3&0\\ 1&2\end{pmatrix} \) \( \)let \( \lambda \in \mathbb{R} \) be an eigenvalue of \( A \). Then

We have, \( Ax=\lambda x , \lambda \in \mathbb{R}^2, x=\begin{pmatrix}x_1\\ x_2\end{pmatrix}\in \mathbb{R}^2, x \neq 0 \)

\( \iff Ax-\lambda x=0 \)

\( \iff \bigg(A-\lambda I\bigg)x=0 \hspace{2mm}, \bigg(x \neq 0\bigg) \)

\( \implies |A-\lambda I|= \left|\begin{pmatrix}3&0\\ 1&2\end{pmatrix}-\lambda \begin{pmatrix}1&0\\ 0&1\end{pmatrix}\right|=\begin{vmatrix}3-\lambda &0\\ 1&2-\lambda \end{vmatrix}=0 \)

\( \implies \bigg(3-\lambda\bigg)\bigg(2-\lambda\bigg)=0 ,\implies \lambda_1=2 , \lambda_2=3 , \) is eigenvalue. Thus, \( specc(A)=\bigg({2,3}\bigg). \)

\( +For \hspace{3mm}\lambda_1=2 : \bigg(A-\lambda_1 x\bigg)=0 \hspace{3mm}, x=\begin{pmatrix}x_1\\ x_2\end{pmatrix}\in \mathbb{R}^2 \)

\( \iff \bigg(A-2I\bigg)x=0 \implies \begin{pmatrix}1&0\\ 1&0\end{pmatrix}x=0 \)

\( \implies \begin{pmatrix}1&0\\ 1&0\end{pmatrix}\:\sim \begin{pmatrix}1&0\\ 0&0\end{pmatrix},\hspace{2mm} Let, \hspace{2mm}x_2=t \implies x_1=0 \)

\( \implies x=\begin{pmatrix}x_1\\ x_2\end{pmatrix}=\begin{pmatrix}0\\ t\end{pmatrix} , t\in \mathbb{R}^2, \hspace{2mm} \)

x is a eigenvector corrsponding to \( \lambda_1 =2 \)

The eigenspace corrsponding to \( \lambda_2=2 \hspace{2mm}is\hspace{2mm} E_2=\left\{\begin{pmatrix}0\\ t\end{pmatrix}\in \mathbb{R}^2|t \in \mathbb{R}^*\right\} \)

\( +For \hspace{3mm} \lambda_2=3 : \bigg(A-\lambda_2I\bigg) x=0 \hspace{3mm}, x=\begin{pmatrix}x_1\\ x_2\end{pmatrix}\in \mathbb{({R}^*)}^2 \)

\( \iff \bigg(A-3I\bigg)x=0 \hspace{3mm} \implies \begin{pmatrix}0&0\\ 1&-1\end{pmatrix}x=0 \)

\( \begin{pmatrix}0&0\\ 1&-1\end{pmatrix}\sim \begin{pmatrix}1&-1\\ 0&0\end{pmatrix} \hspace{2mm},Let \hspace{2mm} x_1=t\implies x_2=t \)

\( \implies E_3=\left\{\begin{pmatrix}t\\ t\end{pmatrix}\in \mathbb{R}^2|t\in \mathbb{R^*}\right\}\hspace{2mm}Thus,\hspace{2mm} E_2=span\bigg(0,1\bigg) \implies dim(E_2)=1 \)


Answer :

Therefore  

\( specc(A)=\bigg({2,3}\bigg). \)

\( E_2=span\bigg(0,1\bigg) \implies dim(E_2)=1 \)

Related Solutions

Find all eigenvalues and their corresponding eigenspaces of the following matrix.
Find all eigenvalues and their corresponding eigenspaces of the following matrix. B=\( \begin{pmatrix}2&-3&1\\ 1&-2&1\\ 1&-3&2\end{pmatrix} \)
Find the characteristic equation and the eigenvalues (and corresponding eigenvectors) of the matrix. 2 −2 5...
Find the characteristic equation and the eigenvalues (and corresponding eigenvectors) of the matrix. 2 −2 5 0 3 −2 0 −1 2 (a) the characteristic equation (b) the eigenvalues (Enter your answers from smallest to largest.) (λ1, λ2, λ3) = the corresponding eigenvectors x1 = x2 = x3 =
Find the eigenvalues with corresponding eigenvectors & show work.
Find the eigenvalues with corresponding eigenvectors & show work. 1/2 1/9 3/10 1/3 1/2 1/5 1/6 7/18 1/2
Find the eigenvalues and eigenvectors of the following matrix. Justify if its diagonaliazble or not. 1...
Find the eigenvalues and eigenvectors of the following matrix. Justify if its diagonaliazble or not. 1 2 0 -3 2 3 -1 2 2
In each of Problems 16 through 25, find all eigenvalues and eigenvectors of the given matrix....
In each of Problems 16 through 25, find all eigenvalues and eigenvectors of the given matrix. 16) A= ( 1st row 5 −1 2nd row 3 1) 23) A= (1st row 3 2 2, 2nd row 1 4 1 , 3rd row -2 -4 -1)
2. Find all eigenvalues and corresponding linearly independent eigenvectors of A = [2 0 3 4]...
2. Find all eigenvalues and corresponding linearly independent eigenvectors of A = [2 0 3 4] (Its a 2x2 matrix) 4. Find all eigenvalues and corresponding linearly independent eigenvectors of A = [1 0 1 0 2 3 0 0 3] (Its's a 3x3 matrix) 6. Find all eigenvalues and corresponding eigenvectors of A =    1 2 3 0 1 2 0 0 1    .(Its a 3x3 matrix)
let A =[4 -5 2 -3] find eigenvalues of A find eigenvector of A corresponding to...
let A =[4 -5 2 -3] find eigenvalues of A find eigenvector of A corresponding to eigenvlue in part 1 find matrix D and P such A= PDP^-1 compute A^6
find all eigenvalues and eigenvectors of the given matrix A= [1 0 0 2 1 -2...
find all eigenvalues and eigenvectors of the given matrix A= [1 0 0 2 1 -2 3 2 1]
If you had a routine for computing all of the eigenvalues of a nonsymmetric matrix, how...
If you had a routine for computing all of the eigenvalues of a nonsymmetric matrix, how could you use it to compute the roots of any polynomial?
Find the eigenvalues and eigenfunctions of the given boundary value problem. Assume that all eigenvalues are...
Find the eigenvalues and eigenfunctions of the given boundary value problem. Assume that all eigenvalues are real. (Let n represent an arbitrary positive number.) y''+λy= 0, y(0)= 0, y'(π)= 0
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT