Question

In: Advanced Math

Prove: An (n × n) matrix A is not invertible ⇐⇒ one of the eigenvalues of...

Prove: An (n × n) matrix A is not invertible ⇐⇒ one of the eigenvalues of A is λ = 0

Solutions

Expert Solution


Related Solutions

Let A be a diagonalizable n × n matrix and let P be an invertible n...
Let A be a diagonalizable n × n matrix and let P be an invertible n × n matrix such that B = P−1AP is the diagonal form of A. Prove that Ak = PBkP−1, where k is a positive integer. Use the result above to find the indicated power of A. A = 6 0 −4 7 −1 −4 6 0 −4 , A5 A5 =
Let A be a diagonalizable n × n matrix and let P be an invertible n...
Let A be a diagonalizable n × n matrix and let P be an invertible n × n matrix such that B = P−1AP is the diagonal form of A. Prove that Ak = PBkP−1, where k is a positive integer. Use the result above to find A5 A = 4 0 −4 5 −1 −4 6 0 −6
The determinant of a matrix is the product of its eigenvalues. Can you prove this when...
The determinant of a matrix is the product of its eigenvalues. Can you prove this when A is diagonalizable? How about if A is 2 x 2, and may or may not be diagonalizable? (Hint: What's the constant term in the characteristic polynomial>
Diagonalize the matrix (That is, find a diagonal matrix D and an invertible matrix P such...
Diagonalize the matrix (That is, find a diagonal matrix D and an invertible matrix P such that A=PDP−1. (Do not find the inverse of P). Describe all eigenspaces of A and state the geometric and algebraic multiplicity of each eigenvalue. A= -1 3 0 -4 6 0 0 0 1
Problem 1 1.1 If A is an n x n matrix, prove that if A has...
Problem 1 1.1 If A is an n x n matrix, prove that if A has n linearly independent eigenvalues, then AT is diagonalizable. 1.2 Diagonalize the matrix below with eigenvalues equal to -1 and 5. 0 1   1   2 1 2 3 3 2 1.3 Assume that A is 4 x 4 and has three different eigenvalues, if one of the eigenspaces is dimension 1 while the other is dimension 2, can A be undiagonalizable? Explain. Answer for all...
Prove the trace of an n x n matrix is an element of the dual space...
Prove the trace of an n x n matrix is an element of the dual space of all n x n matrices.
(2) A matrix A is given. Find, if possible, an invertible matrix P and a diagonal...
(2) A matrix A is given. Find, if possible, an invertible matrix P and a diagonal matrix D such that P −1AP = D. Otherwise, explain why A is not diagonalizable. (a) A =   −3 0 −5                 0 2 0                 2 0 3 (b) A =   2 0 −1              1 3 −1              2 0 5 (c) A = 1 −1 2              −1 1 2               2 2 2
Show that the inverse of an invertible matrix A is unique. That is, suppose that B...
Show that the inverse of an invertible matrix A is unique. That is, suppose that B is any matrix such that AB = BA = I. Then show that B = A−1 .
Linear Algebra Carefully prove the following statement: Let A be an n×n matrix. Assume that there...
Linear Algebra Carefully prove the following statement: Let A be an n×n matrix. Assume that there exists an integer k ≥ 1 such that Ak = I . Prove that A is invertible.
For a 2 by 2 invertible matrix A, define the condition number to be cond(A) =...
For a 2 by 2 invertible matrix A, define the condition number to be cond(A) = ||A|| ⋅ ||A||-1. Assume that the matrix norm is defined using the Euclidean vector norm. (a) Find two 2by2 invertible matrices B and C such that cond(B + C) < cond(B) + cond(C). (b) Find two 2by2 invertible matrices B and C such that cond(B + C) > cond(B) + cond(C). (c) Suppose that A is a symmetric invertible 2by2 matrix. Find cond(2A) and...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT