Question

In: Advanced Math

find all eigenvalues and eigenvectors of the given matrix A= [1 0 0 2 1 -2...

find all eigenvalues and eigenvectors of the given matrix

A= [1 0 0

2 1 -2

3 2 1]

Solutions

Expert Solution


Related Solutions

In each of Problems 16 through 25, find all eigenvalues and eigenvectors of the given matrix....
In each of Problems 16 through 25, find all eigenvalues and eigenvectors of the given matrix. 16) A= ( 1st row 5 −1 2nd row 3 1) 23) A= (1st row 3 2 2, 2nd row 1 4 1 , 3rd row -2 -4 -1)
Find the eigenvalues and eigenvectors of the given matrix. ((0.6 0.1 0.2),(0.4 0.1 0.4), (0 0.8...
Find the eigenvalues and eigenvectors of the given matrix. ((0.6 0.1 0.2),(0.4 0.1 0.4), (0 0.8 0.4))
Find the characteristic equation and the eigenvalues (and corresponding eigenvectors) of the matrix. 2 −2 5...
Find the characteristic equation and the eigenvalues (and corresponding eigenvectors) of the matrix. 2 −2 5 0 3 −2 0 −1 2 (a) the characteristic equation (b) the eigenvalues (Enter your answers from smallest to largest.) (λ1, λ2, λ3) = the corresponding eigenvectors x1 = x2 = x3 =
2. Find all eigenvalues and corresponding linearly independent eigenvectors of A = [2 0 3 4]...
2. Find all eigenvalues and corresponding linearly independent eigenvectors of A = [2 0 3 4] (Its a 2x2 matrix) 4. Find all eigenvalues and corresponding linearly independent eigenvectors of A = [1 0 1 0 2 3 0 0 3] (Its's a 3x3 matrix) 6. Find all eigenvalues and corresponding eigenvectors of A =    1 2 3 0 1 2 0 0 1    .(Its a 3x3 matrix)
Find the eigenvalues and eigenvectors of the following matrix. Justify if its diagonaliazble or not. 1...
Find the eigenvalues and eigenvectors of the following matrix. Justify if its diagonaliazble or not. 1 2 0 -3 2 3 -1 2 2
Find Eigenvalues and eigenvectors 6 -2 2 2    5 0 -2    0 7
Find Eigenvalues and eigenvectors 6 -2 2 2    5 0 -2    0 7
Find all distinct (real or complex) eigenvalues of A. Then find the basic eigenvectors of A...
Find all distinct (real or complex) eigenvalues of A. Then find the basic eigenvectors of A corresponding to each eigenvalue. For each eigenvalue, specify the number of basic eigenvectors corresponding to that eigenvalue, then enter the eigenvalue followed by the basic eigenvectors corresponding to that eigenvalue. A = 11 −10 17 −15 Number of distinct eigenvalues: ? Number of Vectors: ? ? : {???}
eigenvalues of the matrix A = [1 3 0, 3 ?2 ?1, 0 ?1 1] are...
eigenvalues of the matrix A = [1 3 0, 3 ?2 ?1, 0 ?1 1] are 1, ?4 and 3. express the equation of the surface x^2 ? 2y^2 + z^2 + 6xy ? 2yz = 16. How should i determine the order of the coefficient in the form X^2/A+Y^2/B+Z^2/C=1?
Verify that the three eigenvectors found for the two eigenvalues of the matrix in that example...
Verify that the three eigenvectors found for the two eigenvalues of the matrix in that example are linearly independent and find the components of the vector i = ( 1 , 0 , 0 ) in the basis consisting of them. Using \begin{vmatrix}1 & 0 & 0 \\ -4 & 7 & 2 \\ 10 & -15 & -4\end{vmatrix} Which of these is the answer? (2,−5,2)(2,−5,2) (−1,3,23)(−1,3,23) (1,−3,32)(1,−3,32)
Consider the given matrix. −1    2 −5    1 Find the eigenvalues. (Enter your answers...
Consider the given matrix. −1    2 −5    1 Find the eigenvalues. (Enter your answers as a comma-separated list.) λ = 3i,−3i (I got these right) Find the eigenvectors of the matrix. (Enter your answers in order of the corresponding eigenvalues, from smallest to largest by real part, then by imaginary part.) K1 = K2 = I can't seem to get the eigenvectors right.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT