In: Finance
Kebt Corporation's Class Semi bonds have a 12-year maturity and an 12.00% coupon paid semiannually (6% each 6 months), and those bonds sell at their $1,000 par value. The firm's Class Ann bonds have the same risk, maturity, nominal interest rate, and par value, but these bonds pay interest annually. Neither bond is callable. At what price should the annual payment bond sell?
a. |
$850.92 |
|
b. |
$909.60 |
|
c. |
$987.85 |
|
d. |
$978.07 |
|
e. |
$1,154.12 |
If any bond (issued at par and redeemable or callable at par) is selling at par, its yield will be its nominal coupon(Interest) rate. The reason for this is we are multiplying same interests and discounting at same rate.
We can cross check it, the price of the bond is the present value of future cash flow.
Present value = Annual cash flow X discount factor for the corresponding year.
discount factor for the corresponding year.= 1/(1+i)n here i = 6% or 0.06, n = curresponding semi-annual period,
for first semi annual period = 1/(1.061), 2nd semi annual period =1/(1.062), 2rd semi annual period = 1/(1.063), like that....
year | Coupon | Discount Factor | Discounted Cash flow | ||||
1 | 60 | 0.943396226415094 | 56.60377358490570 | ||||
2 | 60 | 0.889996440014240 | 53.39978640085440 | ||||
3 | 60 | 0.839619283032302 | 50.37715698193810 | ||||
4 | 60 | 0.792093663238020 | 47.52561979428120 | ||||
5 | 60 | 0.747258172866057 | 44.83549037196340 | ||||
6 | 60 | 0.704960540439676 | 42.29763242638060 | ||||
7 | 60 | 0.665057113622336 | 39.90342681734020 | ||||
8 | 60 | 0.627412371341827 | 37.64474228050960 | ||||
9 | 60 | 0.591898463530025 | 35.51390781180150 | ||||
10 | 60 | 0.558394776915118 | 33.50368661490710 | ||||
11 | 60 | 0.526787525391621 | 31.60725152349720 | ||||
12 | 60 | 0.496969363577001 | 29.81816181462000 | ||||
13 | 60 | 0.468839022242453 | 28.13034133454720 | ||||
14 | 60 | 0.442300964379673 | 26.53805786278040 | ||||
15 | 60 | 0.417265060735541 | 25.03590364413240 | ||||
16 | 60 | 0.393646283712774 | 23.61877702276640 | ||||
17 | 60 | 0.371364418596957 | 22.28186511581740 | ||||
18 | 60 | 0.350343791129204 | 21.02062746775230 | ||||
19 | 60 | 0.330513010499249 | 19.83078062995500 | ||||
20 | 60 | 0.311804726886084 | 18.70828361316510 | ||||
21 | 60 | 0.294155402722721 | 17.64932416336330 | ||||
22 | 60 | 0.277505096908227 | 16.65030581449360 | ||||
23 | 60 | 0.261797261234177 | 15.70783567405060 | ||||
24 | 1060 | 0.246978548334129 | 261.79726123417700 | ||||
Price of the bond | 999.99999999999900 |
The price = $1000
The first specified bond's Semi-annualized return = 6%, effective annualized return =1.062 =1.1236, i.e, 12.36%,
Present value = Annual cash flow X discount factor for the corresponding year.
discount factor for the corresponding year.= 1/(1+i)n here i = 12.36% or 0.1236, n = curresponding semi-annual period. For first semi annual period = 1/(1.12361), 2nd semi annual period =1/(1.12362), 2rd semi annual period = 1/(1.12363), like that....
Computation table is given below
Year | Coupon/ cash flow | Discount Rate @12% | Discounted cash flow | |||
1 | 0.88999644 | 120 | 106.7995728 | |||
2 | 0.792093663 | 120 | 95.05123959 | |||
3 | 0.70496054 | 120 | 84.59526485 | |||
4 | 0.627412371 | 120 | 75.28948456 | |||
5 | 0.558394777 | 120 | 67.00737323 | |||
6 | 0.496969364 | 120 | 59.63632363 | |||
7 | 0.442300964 | 120 | 53.07611573 | |||
8 | 0.393646284 | 120 | 47.23755405 | |||
9 | 0.350343791 | 120 | 42.04125494 | |||
10 | 0.311804727 | 120 | 37.41656723 | |||
11 | 0.277505097 | 120 | 33.30061163 | |||
12 | 0.246978548 | 1120 | 276.6159741 | |||
Price of the bond | 978.0673364 |
Price of the bond ronded to 2 decimal = 978.07, The price of the bond is option d - $978.07