Question

In: Math

Calculate the arc length of the indicated portion of the curve r(t). r(t) = i +...

Calculate the arc length of the indicated portion of the curve r(t).

r(t) = i + (9t sin t)j + (9t cos t)k ; -3 ≤ t ≤ 7

Solutions

Expert Solution

feel free to ask any doubt please. If you don't have any doubt please like.


Related Solutions

Calculate the length of the curve r (t) = (3cost, 5t, 3sint) and calculate what is...
Calculate the length of the curve r (t) = (3cost, 5t, 3sint) and calculate what is indicated below a) Unit tangent vector T= b) Main Normal Vector N = c) Binormal vector B = d) Function curvature k = e) Torsion function t = f) the tangential and normal acceleration components at = and aN =
Given r(t) = <2 cos(t), 2 sin(t), 2t>. • What is the arc length of r(t)...
Given r(t) = <2 cos(t), 2 sin(t), 2t>. • What is the arc length of r(t) from t = 0 to t = 5. SET UP integral but DO NOT evaluate • What is the curvature κ(t)?
Given v′(t)=2ti+j, find the arc length of the curve v(t) on the interval [−2,3]. You may...
Given v′(t)=2ti+j, find the arc length of the curve v(t) on the interval [−2,3]. You may use technology to approximate your solution to three decimal places.
Find the arc length of the curve on the given interval. x=t^2 + 10 y=4t^3 +...
Find the arc length of the curve on the given interval. x=t^2 + 10 y=4t^3 + 9 from in the interval -1 < t < 0
Let C be a plane curve parameterized by arc length by α(s), T(s) its unit tangent...
Let C be a plane curve parameterized by arc length by α(s), T(s) its unit tangent vector and N(s) be its unit normal vector. Show d dsN(s) = −κ(s)T(s).
Find the arc length of the curve on the given interval. x= lnt , y =...
Find the arc length of the curve on the given interval. x= lnt , y = t + 1, 1 ≤ t ≤ 2
Using the formula for arc length of, find the arc length of  between the limits of ....
Using the formula for arc length of, find the arc length of  between the limits of . Write out the formula and the steps leading to the answer.
Find the length of the curve. 2  t i + et j + e−t k,     0 ≤...
Find the length of the curve. 2  t i + et j + e−t k,     0 ≤ t ≤ 5
Approximate the arc length of the curve over the interval using Simpson’s Rule SN with ?=8....
Approximate the arc length of the curve over the interval using Simpson’s Rule SN with ?=8. ?=2?^(−?^2), on ?∈[0,2] (Use decimal notation. Give your answer to four decimal places.) ?8≈
Approximate the arc length of the curve over the interval using Simpson’s Rule SN with N=8....
Approximate the arc length of the curve over the interval using Simpson’s Rule SN with N=8. y=7e^(−x2) on x∈[0,2] (Use decimal notation. Give your answer to four decimal places.)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT