Question

In: Advanced Math

Calculate the length of the curve r (t) = (3cost, 5t, 3sint) and calculate what is...

Calculate the length of the curve r (t) = (3cost, 5t, 3sint) and calculate what is indicated below
a) Unit tangent vector T=
b) Main Normal Vector N =
c) Binormal vector B =
d) Function curvature k =
e) Torsion function t =
f) the tangential and normal acceleration components at = and aN =

Solutions

Expert Solution


Related Solutions

Calculate the arc length of the indicated portion of the curve r(t). r(t) = i +...
Calculate the arc length of the indicated portion of the curve r(t). r(t) = i + (9t sin t)j + (9t cos t)k ; -3 ≤ t ≤ 7
If u(t) = < sin(5t), cos(5t), t > and v(t) = < t, cos(5t), sin(5t) >,...
If u(t) = < sin(5t), cos(5t), t > and v(t) = < t, cos(5t), sin(5t) >, use the formula below to find the given derivative. d/dt[ u(t) * v(t)] = u'(t) * v(t) + u(t)* v'(t) d/dt [ u(t) x v(t)] = ?
Determine whether the curve denoted by the vector function r(t) = <2 + sin(5t), -6, 3/2...
Determine whether the curve denoted by the vector function r(t) = <2 + sin(5t), -6, 3/2 (cos(5t))> lies on the surface 9x^2 - 36x - y^2 + 4z^2 = -36.
Given r(t) = <2 cos(t), 2 sin(t), 2t>. • What is the arc length of r(t)...
Given r(t) = <2 cos(t), 2 sin(t), 2t>. • What is the arc length of r(t) from t = 0 to t = 5. SET UP integral but DO NOT evaluate • What is the curvature κ(t)?
The curve C is given by the parameterization ⃗r(t) = <−t , 1 − t^2> for...
The curve C is given by the parameterization ⃗r(t) = <−t , 1 − t^2> for −1 ≤ t ≤ 1. a) Choose any vector field F⃗ (x, y) = 〈some function , some other function〉 and setup the work integral of F⃗ over C. b)Choose any vector field G⃗(x,y) which has a potential function of the form φ(x,y)= x^3 + y^3 + some other stuff and compute the work done by G⃗ over C. Please use a somewhat basic...
Find T(t), N(t), aT, and aN at the given time t for the space curve r(t)....
Find T(t), N(t), aT, and aN at the given time t for the space curve r(t). [Hint: Find a(t), T(t), aT, and aN. Solve for N in the equation a(t)=aTT+aNN. (If an answer is undefined, enter UNDEFINED.) Function    Time r(t)=9ti-tj+(t^2)k t=-1 T(-1)= N(-1)= aT= aN=
Given the curve −→r (t) = <sin3 (t), cos3 (t),sin2 (t)> for 0 ≤ t ≤...
Given the curve −→r (t) = <sin3 (t), cos3 (t),sin2 (t)> for 0 ≤ t ≤ π/2 find the unit tangent vector, unit normal vector, and the curvature.
Find the curvature of the parametrized curve ~r(t) =< 2t 2 , 4 + t, −t...
Find the curvature of the parametrized curve ~r(t) =< 2t 2 , 4 + t, −t 2 >.
Let r(t) = (cos(πt), sin(πt), 3t). Calculate r'(t), T(t) and evaluate T(1).
Let r(t) = (cos(πt), sin(πt), 3t). Calculate r'(t), T(t) and evaluate T(1).
Let f (t)  = { 7 0  ≤  t  ≤  2π cos(5t) 2π  <  t  ≤ ...
Let f (t)  = { 7 0  ≤  t  ≤  2π cos(5t) 2π  <  t  ≤  4π e3(t−4π) t  >  4π (a)  f (t) can be written in the form g1(t)  +  g2(t)U(t − 2π)  +  g3(t)U(t − 4π) where U(t) is the Heaviside function. Enter the functions g1(t), g2(t), and g3(t), into the answer box below (in that order), separated with commas. (b) Compute the Laplace transform of  f (t).
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT