Question

In: Advanced Math

Let C be a plane curve parameterized by arc length by α(s), T(s) its unit tangent...

Let C be a plane curve parameterized by arc length by α(s), T(s) its unit tangent vector and N(s) be its unit normal vector. Show d dsN(s) = −κ(s)T(s).

Solutions

Expert Solution


Related Solutions

Calculate the arc length of the indicated portion of the curve r(t). r(t) = i +...
Calculate the arc length of the indicated portion of the curve r(t). r(t) = i + (9t sin t)j + (9t cos t)k ; -3 ≤ t ≤ 7
Give an arc-length paramaterization of the line which is the intersection of the tangent planes of...
Give an arc-length paramaterization of the line which is the intersection of the tangent planes of z=x^2+y^3 at (1,-1,0) and (1,2,9)
Given v′(t)=2ti+j, find the arc length of the curve v(t) on the interval [−2,3]. You may...
Given v′(t)=2ti+j, find the arc length of the curve v(t) on the interval [−2,3]. You may use technology to approximate your solution to three decimal places.
Find the arc length of the curve on the given interval. x=t^2 + 10 y=4t^3 +...
Find the arc length of the curve on the given interval. x=t^2 + 10 y=4t^3 + 9 from in the interval -1 < t < 0
15. a. Find the unit tangent vector T(1) at time t=1 for the space curve r(t)=〈t3...
15. a. Find the unit tangent vector T(1) at time t=1 for the space curve r(t)=〈t3 +3t, t2 +1, 3t+4〉. b. Compute the length of the space curve r(t) = 〈sin t, t, cos t〉 with 0 ≤ t ≤ 6.
let α ∈ C be a zero of the polynomial t^3 − 4t + 2 =...
let α ∈ C be a zero of the polynomial t^3 − 4t + 2 = 0 and let R = {a1 + bα + cα^2 : a,b,c ∈ Z}. Show that R is a integral domain and Show that α − 1 and 2α − 1 are units in R. [Hint: what if x = t + 1?
1. Find an equation for the line in the xy−plane that is tangent to the curve...
1. Find an equation for the line in the xy−plane that is tangent to the curve at the point corresponding to the given value of t. Also, find the value of d^2y/dx^2 at this point. x=sec t, y=tan t, t=π/6 2. Find the length of the parametric curve: x=cos t, y=t+sin t, 0 ≤ t ≤ π. Hint:To integrate , use the identity,  and complete the integral.
Find the arc length of the curve on the given interval. x= lnt , y =...
Find the arc length of the curve on the given interval. x= lnt , y = t + 1, 1 ≤ t ≤ 2
Type or paste question here ax+by+c=0.ax+by+c=0. Let (s′,t′)(s′,t′) be the reflection of the point (s,t)(s,t) in...
Type or paste question here ax+by+c=0.ax+by+c=0. Let (s′,t′)(s′,t′) be the reflection of the point (s,t)(s,t) in ℓℓ. Find a formula that computes the coordinates of (s′,t′)(s′,t′) if one knows the numbers s,t,a,bs,t,a,b and cc. Your formula should depend on the variables s,t,a,bs,t,a,b and cc. It should work for arbitrary values of s,t,a,bs,t,a,b and cc as long as (a,b)≠(0,0)(a,b)≠(0,0). Its output should be a point.
Let S be the square centered at the origin with sides of length 2, and C...
Let S be the square centered at the origin with sides of length 2, and C be the unit circle centered at the origin. (a) If you randomly throw a point on S, what is the probability that it will lie in C? Ans: 0.785 (b) Describe how you could use simulation to estimate the probability in part (a). (c) How can you use simulation to estimate a? For part b and c, there maybe a need to generate random...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT