Question

In: Chemistry

A 10-ft3 tank contains a saturated mixture of refrigerant R-134a at a pressure of 40 psia....

A 10-ft3 tank contains a saturated mixture of refrigerant R-134a at a pressure of 40 psia. If the saturated liquid occupies 2% of the volume, determine the a) total mass (lbm) b) quality c) average internal energy (Btu lbm) d) temperature (℉).

Solutions

Expert Solution

a pressure of 40 psia = 2.72 bar

from R-134 thermoynamics tables, this correspond to a temperatue of 2 deg.c

From F= 1.8C+32= 1.8*2+32= 35.6 F

from the tables, volumes :Saturated liquid : 0.775*10-3 kg/m3 and vapor =0.0689 m3/kg

liquid occupies 2% of the tank volume

Volumes in the tank : liquid =2%= 10*2/100= 0.2 ft3 and vapor =10-0.2 =9.8 ft3

but 1ft =0.3048m

volumes of liquid and vapor in the tank : 0.2*(0.3048)3 =0.005663 m3 and vapor =9.8*(0.3048)3=0.277m3

mass : =Volume/specific volume

Mass : Liquid : : 0.005663/{0.775*10-3) kg=7.3 kg and vapor =0.277/0.0689=4.02 kg

total mass = 7.3+4.02=11.32 kg but 1 lb= 0.4535 kg , 11,32 kg =11.32/0.4535lb=24.96 lb

Quality of steam= amout of vapor/ total quantity=100* (4.02/11.32)=35.5%, liquid fraction= 100-35.5=64.5

internal energyof liquid ( from tables)= 52.01 kj/kg and that of vapor = 228.32 Kj/Kg

average internal energy= liquid mass fraction* Internal energy of liquid + vapor mass fraction* internal energy of vapor =0.645*52.01+0.355*228.32 Kj/Kg=114.6 Kj/Kg

1 Kj/Kg =0.429 But/lb

114.6 Kj/Kg= 114.6*0.429 Btu/lb=49.16 Btu/lb

=


Related Solutions

A two-phase liquid–vapor mixture of Refrigerant 134a is contained in a 2-ft3, cylindrical storage tank at...
A two-phase liquid–vapor mixture of Refrigerant 134a is contained in a 2-ft3, cylindrical storage tank at 100 lbf/in.2 Initially, saturated liquid occupies 1.6 ft3. The valve at the top of the tank develops a leak, allowing saturated vapor to escape slowly. Eventually, the volume of the liquid drops to 0.6 ft3. If the pressure in the tank remains constant, determine (a) the mass of refrigerant that has escaped, in lb, and (b) the heat transfer, in Btu. PLEASE USE THE...
A piston-cylinder assembly contains 2.5 kg of saturated refrigerant R-134a with a quality of 10 %...
A piston-cylinder assembly contains 2.5 kg of saturated refrigerant R-134a with a quality of 10 % at 0 °C (State 1). There is a linear spring mounted on the piston such that when the mixture is heated the pressure reaches 1000 kPa with a volume of 70 L just as the piston touches the stop (State 2). The system is then heated further until a pressure of 1200 kPa is reached (State 3). a) Find the volume of the refrigerant...
Determine the volume, in ft3, of 2 lb of a two-phase liquid–vapor mixture of Refrigerant 134A...
Determine the volume, in ft3, of 2 lb of a two-phase liquid–vapor mixture of Refrigerant 134A at 44°F with a quality of 40%.
A rigid, well-insulated tank contains a two-phase mixture consisting of 0.005 ft3 of saturated liquid water...
A rigid, well-insulated tank contains a two-phase mixture consisting of 0.005 ft3 of saturated liquid water and 2.7 ft3 of saturated water vapor, initially at 14.7 lbf/in.2 A paddle wheel stirs the mixture until only saturated vapor remains in the tank. Kinetic and potential energy effects are negligible. For the water, determine the amount of energy transfer by work, in Btu.
Refrigerant R-134a enters the compressor of a refrigeration machine at 140 kPa pressure and -10 °...
Refrigerant R-134a enters the compressor of a refrigeration machine at 140 kPa pressure and -10 ° C temperature and exits at 1 MPa pressure. The volumetric flow of the refrigerant entering the compressor is 0.23 m3 / minute. The refrigerant enters the throttling valve at 0.95 MPa pressure and 30 ° C, exiting the evaporator as saturated steam at -18 ° C. The adiabatic efficiency of the compressor is 78%. Show the cycle in the T-s diagram. In addition, a)...
please show all work A 0.5-m3 rigid tank contains refrigerant-134a initially at 180 kPa and 40...
please show all work A 0.5-m3 rigid tank contains refrigerant-134a initially at 180 kPa and 40 percent quality. Heat is now transferred to the refrigerant until the pressure reaches 700 kPa. Determine the amount of heat transferred. (Round the final answer to the nearest whole number.) The amount of heat transferred is _____ kJ. Also, show the process on a P-v diagram with respect to saturation lines.
Refrigerant-134a is throttled from the saturated liquid state at 700 kPa to a pressure of 160...
Refrigerant-134a is throttled from the saturated liquid state at 700 kPa to a pressure of 160 kPa. Determine the temperature drop during this process and the final specific volume of the refrigerant.
A tank with a volume of 0.6 m3 contains 12 kg of refrigerant-134a at -220C. Calculate...
A tank with a volume of 0.6 m3 contains 12 kg of refrigerant-134a at -220C. Calculate the pressure of the refrigerant (a), (b) the total internal energy (kJ) and (c) the volume occupied by the liquid phase (m3).
Saturated liquid refrigerant R-134a is throttled from 900 to 90 kPa at a rate of 0.32...
Saturated liquid refrigerant R-134a is throttled from 900 to 90 kPa at a rate of 0.32 kg/s. What is the rate of entropy generation for this throttling process? kW/K
A commercial refrigerant that uses R-134a as the refrigerant is used for cooling, to keep the...
A commercial refrigerant that uses R-134a as the refrigerant is used for cooling, to keep the condition at -35o, throws heat into the cooling water that has been in the condenser at 18oC and 0.25kg / s and has been formed since 26o. The refrigerant enters the condenser at 1.2 MPa and 50o ° and exits by cooling 5o C more than the saturation temperature at the same pressure. If the compressor consumes 3.3 kW (Answer: 0.0498 kg / s,...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT