Question

In: Physics

Determine the volume, in ft3, of 2 lb of a two-phase liquid–vapor mixture of Refrigerant 134A...

Determine the volume, in ft3, of 2 lb of a two-phase liquid–vapor mixture of Refrigerant 134A at 44°F with a quality of 40%.

Solutions

Expert Solution


Related Solutions

A two-phase liquid–vapor mixture of Refrigerant 134a is contained in a 2-ft3, cylindrical storage tank at...
A two-phase liquid–vapor mixture of Refrigerant 134a is contained in a 2-ft3, cylindrical storage tank at 100 lbf/in.2 Initially, saturated liquid occupies 1.6 ft3. The valve at the top of the tank develops a leak, allowing saturated vapor to escape slowly. Eventually, the volume of the liquid drops to 0.6 ft3. If the pressure in the tank remains constant, determine (a) the mass of refrigerant that has escaped, in lb, and (b) the heat transfer, in Btu. PLEASE USE THE...
A closed, rigid tank contains a two-phase liquid–vapor mixture of Refrigerant 22 initially at -20°C with...
A closed, rigid tank contains a two-phase liquid–vapor mixture of Refrigerant 22 initially at -20°C with a quality of 47.50%. Energy transfer by heat into the tank occurs until the refrigerant is at a final pressure of 6 bar. a) Determine the final temperature, in °C. b) If the final state is in the superheated vapor region, at what temperature, in °C, does the tank contain only saturated vapor?
A 10-ft3 tank contains a saturated mixture of refrigerant R-134a at a pressure of 40 psia....
A 10-ft3 tank contains a saturated mixture of refrigerant R-134a at a pressure of 40 psia. If the saturated liquid occupies 2% of the volume, determine the a) total mass (lbm) b) quality c) average internal energy (Btu lbm) d) temperature (℉).
A rigid, well-insulated tank contains a two-phase mixture consisting of 0.005 ft3 of saturated liquid water...
A rigid, well-insulated tank contains a two-phase mixture consisting of 0.005 ft3 of saturated liquid water and 2.7 ft3 of saturated water vapor, initially at 14.7 lbf/in.2 A paddle wheel stirs the mixture until only saturated vapor remains in the tank. Kinetic and potential energy effects are negligible. For the water, determine the amount of energy transfer by work, in Btu.
A laboratory cell with volume of 0.007769 ft3 contains 0.001941 lb-moles mixture given in the table...
A laboratory cell with volume of 0.007769 ft3 contains 0.001941 lb-moles mixture given in the table below. Temperature is to be raised to 80OF, using Soave-Redlich-Kwong (SRK) equation of state calculate the expected pressure to be. Compare your results with experimental results of 1200 psia + 2 %. Component Composition, mole fraction Acentric factor (?) Methane 0.85 0.0104 Ethane 0.1 0.0979 Propane 0.05 0.1522 use values of zero for binary interaction coefficients
One kilogram of Refrigerant 134a vapor initially at 2 bar and 20°C fills a rigid vessel....
One kilogram of Refrigerant 134a vapor initially at 2 bar and 20°C fills a rigid vessel. The vapor is cooled until the temperature becomes -24°C. There is no work during the process. Let To = 20°C, po = 0.1 MPa and ignore the effects of motion and gravity. 2. For the refrigerant, determine the change in exergy, in kJ. Note: for part 1: q=-98.086kj please find part two- the change in exergy in kj
An ice-making machine operates on the ideal-vapor compression cycle using refrigerant-134a. The refrigerant enters the compressor...
An ice-making machine operates on the ideal-vapor compression cycle using refrigerant-134a. The refrigerant enters the compressor as saturated vapor at 40 psia and leaves the condenser as saturated liquid at 80 psia. Water enters the ice machine at 55°F and leaves as ice at 25°F. For an ice production rate of 21 lbm/h, determine the power input to the ice machine (169 Btu of heat needs to be removed from each lbm of water at 55°F to turn it into...
Give an example of a vapor-liquid phase diagram and explain the difference in liquid and vapor...
Give an example of a vapor-liquid phase diagram and explain the difference in liquid and vapor composition at a given temperature during the distillation process.
Refrigerant 134a enters an insulated compressor operating at steady state as saturated vapor at -26oC with...
Refrigerant 134a enters an insulated compressor operating at steady state as saturated vapor at -26oC with a volumetric flow rate of 0.18 m3/s. Refrigerant exits at 8 bar, 70oC. Changes in kinetic and potential energy from inlet to exit can be ignored. Determine the volumetric flow rate at the exit, in m3/s, and the compressor power, in kW.
Refrigerant 134a enters an insulated compressor operating at steady state as saturated vapor at -20oC with...
Refrigerant 134a enters an insulated compressor operating at steady state as saturated vapor at -20oC with a volumetric flow rate of 0.18 m3/s. Refrigerant exits at 9 bar, 70oC. Changes in kinetic and potential energy from inlet to exit can be ignored. Determine the volumetric flow rate at the exit, in m3/s, and the compressor power, in kW.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT