Question

In: Physics

Q1. Suppose a hollow cylinder made of SS 316 with the thermal conductivity of 16.26 W/m...

Q1. Suppose a hollow cylinder made of SS 316 with the thermal conductivity of 16.26 W/m K, has inner diameter and thickness of 0.4 and 0.03 m, respectively and length of 1 m. Find the outer diameter of the cylinder (in meter)

Q2. Calculate the thermal energy generation, if the volumetric heat generation inside the cylinder equal to 2.2 x 10^5 W/m^3

Q3. If the outer diameter of cylinder is changed to 0.46 m and the cylinder is cooled by water at the temperature of 23°C, the heat transfer coefficient of fluid is 1200 W/m^2 K, and the volumetric heat generation inside the cylinder equal to 1 x 10^5 W/m^3 , calculate the steady state outer surface temperature (in °C)

Q4. By using the outer diameter of problem no 3, calculate the convective heat transfer (qconv) if the fluid and outer surface temperature at 24°C and 41°C, respectively, and the heat transfer coefficient of fluid change to 700 W/m^2

Q5. By using the outer diameter of problem no 3, the fluid and outer surface temperature at 25°C and 45°C, respectively, and heat transfer coefficient of fluid 1350 W/m^2 K. Calculate the inner surface temperature (in °C)

Q6. By using the outer diameter of problem no 3, and outer surface temperature of problem no 5, calculate the conductive heat transfer (qcond), if the inner surface temperature is 145°C (answer in unit kilo Watt)

Solutions

Expert Solution


Related Solutions

1. Suppose a hollow cylinder made of SS 316 with the thermal conductivity of 16.26 W/m...
1. Suppose a hollow cylinder made of SS 316 with the thermal conductivity of 16.26 W/m K, has inner diameter and thickness of 0.4 and 0.05 m, respectively and length of 1 m. Find the outer diameter of the cylinder (in meter) 2. Calculate the thermal energy generation, if the volumetric heat generation inside the cylinder equal to 2.1 x 10^5 W/m^3 3. If the outer diameter of cylinder is changed to 0.46 m and the cylinder is cooled by...
3. A stainless steel sphere of thermal conductivity 16 W/m · K with a diameter of...
3. A stainless steel sphere of thermal conductivity 16 W/m · K with a diameter of 4 cm is exposed to a convective environment of 15 W/m2 · K, 20?C. Heat is generated uniformly in the sphere at a rate of 1.0 MW/m3 . Determine the steady-state temperature of the sphere at its center and its surface. Also determine the heat flux at a radius of 1.5 cm.
In a slab of material 0.25 m thick and having a thermal conductivity of 45 W/mK,...
In a slab of material 0.25 m thick and having a thermal conductivity of 45 W/mK, the temperature °C at x under steady state is given by T = 100 + 200x – 400x2 when x is measured from one face in m. Determine the heat flow at x = 0, x = 0.125 and x = 0.25 m and also the temperatures and temperature gradients at these planes. If the difference in heat flow at these sections is due...
Convert: a. Thermal conductivity value of 0.3 Btu/(h ft oF) to W/(m oC). b. Surface heat...
Convert: a. Thermal conductivity value of 0.3 Btu/(h ft oF) to W/(m oC). b. Surface heat transfer coefficient value of 105 Btu/(h ft^2 oF) to W/(m^2 oC)
A conductor is made in the form of a hollow cylinder with innerandouter radii a...
A conductor is made in the form of a hollow cylinder with inner and outer radii a and b, respectively. It carries a current I, uniformly distributed over its crosssection. Derive expressions for the magnitude of the magnetic field in the regionsa) r < ab) a < rc) r > b
Heat is generated uniformly at a rate of 2x105 W/m3 in a wall of thermal conductivity...
Heat is generated uniformly at a rate of 2x105 W/m3 in a wall of thermal conductivity 25W/m K and thickness 60 mm. The wall is exposed to convection on both sides, with a fluid temperature of 30C and h = 50W/m2 K on the left side, a fluid temperature of 15C and h = 12 W/m2 K on the right side. (a) Determine surface temperature on each side of the wall, and (b) the maximum temperature in the wall.
A spherical shell of wood with thermal conductivity of 0.13 W/m.K and an inner and outer...
A spherical shell of wood with thermal conductivity of 0.13 W/m.K and an inner and outer radius of 10 cm and 20 cm respectively contains a mixture of water and water vapor(100 C) inside the shell which is undergoing a phase change at atmospheric pressure. The shell is suspended in a large room with an ambient air temperature of 25 C Determine the temperature on the outer surface of the spherical shell and rate of heat loss from the fluid...
Consider a large plate of thickness 50 mm and thermal conductivity of k= 69 W/m.C in...
Consider a large plate of thickness 50 mm and thermal conductivity of k= 69 W/m.C in which heat is generated uniformly at a constant rate of 600 kW/m3. One side of the plate is insulated while the other side is subjected to convection to the environment at 30oC with a heat transfer coefficient of h= 94 W/m^2.C. considering six equal spaced nodes with a nodal spacing of 10 mm: (a) obtain the Finite Difference formulation of this problem, (b) determine...
A rod of diameter D = 25 mm and thermal conductivity of 60 W/m·K protrudes from...
A rod of diameter D = 25 mm and thermal conductivity of 60 W/m·K protrudes from a furnace with a wall temperature of 200ºC. The rod is welded to the furnace wall and is used as a hangar for instrumentation cables. To avoid damaging the cables, the surface temperature of last 100 mm of the rod must be kept below 100ºC. The ambient air temperature is 25ºC and the convection coefficient is 15 W/m2K. (a) Write the finite-difference equation for...
A composite cylindrical wall is composed of 2 materials of thermal conductivity ka = 240 W/mK...
A composite cylindrical wall is composed of 2 materials of thermal conductivity ka = 240 W/mK and kb = 20 W/mK, where interfacial contact resistance is negligible. - Liquid pumped through the tube is at a temperature Tinf, i = 200 F and provides a convection coefficient hi = 450 W/m^2K at the inner surface of the composite pipe -The outer surface is exposed to Tinf, o and provides a convection coefficient of ho = 20 W/m^2K -A thermocouple between...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT