In: Chemistry
A solution contains 0.040 M Hg2^2+ and 0.015 M Pb^2+ . If you add Cl–, Hg2Cl2 and PbCl2 will begin to precipitate. What is the concentration of Cl– required, in molarity, when
A. Hg2Cl2 precipitation begins?
B. Hg2Cl2 precipitation is 99.99% complete?
C. PbCl2 precipitation begins?
D. PbCl2 precipitation is 99.99% complete?
Finally, give the concentration range of Cl– for the complete separation of Hg22 and Pb2 .
E. Concentration of Cl– at the start:
F. Concentration of Cl– once complete:
Sol :-
Ksp of Hg2Cl2 = 1.10 x 10-18
Ksp of PbCl2 = 1.7 x 10-5
(a). Partial dissociation of Hg2Cl2 is :
Hg2Cl2 <--------------> Hg22+ + 2Cl-
Expression of Ksp is :
Ksp = [Hg2+2]. [2Cl-]2 = 1.10 x 10-18
So,
4 [Cl-]2 = 1.10 x 10-18 / 0.040
[Cl-]2 = 6.875 x 10-18
[Cl-] = 2.62 x 10-9 M
--------------------------------------------------------
(b). Precipitation is 99.99% completes means the % of Hg2+2 left = 0.01 %
The 0.01% of Hg2+2 = 0.01 x 0.04 / 100 = 4 x 10-6
Ksp = [Hg+2] [2 Cl-]2 = 1.10 x 10-18
4[Cl-]2 = 1.10 x 10-18 / 4 x 10-6
[Cl-]2 = 0.06875 x 10-12
[Cl-] = 2.62 x 10-7 M
---------------------------------------------------------------------
(c). Partial dissociation of PbCl2 is :
PbCl2 <---------------------> Pb2+ + 2 Cl-
Expression of Ksp is :
Ksp = [Pb+2] [2Cl-]2
Ksp = 4[Pb+2] [Cl-]2
1.7 x 10-5 / 4 X 0.015 = [Cl-]2
[Cl-] = 1.68 X 10-2 M
-----------------------------------------------------------
(d). PbCl2 ppt . 99.99%
Which mean Pb+2 left = 0.01 % of 0.015 = 1.5 X 10-6 M
1.7 x 10-5 = Ksp =[Pb+2] [2Cl-]2
[Pb+2] [2Cl-]2 = 1.7 x 10-5
[Cl-] = 1.7 x 10-5 / 4 x 1.5 x 10-6
[Cl-] = 1.68 M