Question

In: Chemistry

A solution contains 0.026 M  Hg2+2 and 0.019 M Pb2+. If you add Cl−, Hg2Cl2 and PbCl2...

A solution contains 0.026 M  Hg2+2 and 0.019 M Pb2+. If you add Cl−, Hg2Cl2 and PbCl2 will begin to precipitate.

A) What is the concentration of Cl− required, in molarity, when Hg2Cl2 precipitation begins?

B) What is the concentration of Cl− required, in molarity, when Hg2Cl2 precipitation is 99.99% complete?

C) What is the concentration of Cl− required, in molarity, when PbCl2 precipitation begins?

D) What is the concentration of Cl− required, in molarity, when PbCl2 precipitation is 99.99% complete?

Finally, give the Cl− concentration range in which Hg2+2 can be completely separated from Pb2+ by precipitation.

E) Give the lowest Cl− concentration for the separation of Hg2+2 from Pb2+

F) Give the highest Cl− concentration for the separation of Hg2+2 from Pb2+.

Solutions

Expert Solution


Related Solutions

A solution contains 0.040 M Hg2^2+ and 0.015 M Pb^2+ . If you add Cl–, Hg2Cl2...
A solution contains 0.040 M Hg2^2+ and 0.015 M Pb^2+ . If you add Cl–, Hg2Cl2 and PbCl2 will begin to precipitate. What is the concentration of Cl– required, in molarity, when A. Hg2Cl2 precipitation begins? B. Hg2Cl2 precipitation is 99.99% complete? C. PbCl2 precipitation begins? D. PbCl2 precipitation is 99.99% complete? Finally, give the concentration range of Cl– for the complete separation of Hg22 and Pb2 . E. Concentration of Cl– at the start: F. Concentration of Cl– once...
A solution contains 0.040 M Hg22 and 0.032 M Pb2 . If you add Cl–, Hg2Cl2...
A solution contains 0.040 M Hg22 and 0.032 M Pb2 . If you add Cl–, Hg2Cl2 and PbCl2 will begin to precipitate. What is the concentration of Cl– required, in molarity, when: A. Hg2Cl2 precipitation begins? B. Hg2Cl2 precipitation is 99.99% complete? C. PbCl2 precipitation begins? D. PbCl2 precipitation is 99.99% complete? Finally, give the concentration range of Cl– for the complete precipitation of Hg22 and Pb2 . E. Concentration of Cl– at the start of precipitation: F. Concentration of...
A solution contains 0.036 M0.036 M Ag+Ag+ and 0.013 M0.013 M Pb2+.Pb2+. If you add Cl−,Cl−,...
A solution contains 0.036 M0.036 M Ag+Ag+ and 0.013 M0.013 M Pb2+.Pb2+. If you add Cl−,Cl−, AgClAgCl and PbCl2PbCl2 will begin to precipitate. What is the concentration of Cl−Cl− required, in molarity, when AgClAgCl precipitation begins? concentration of Cl−=Cl−= M What is the concentration of Cl−Cl− required, in molarity when AgClAgCl precipitation is 99.99% complete? concentration of Cl−=Cl−= M What is the concentration of Cl−Cl− required, in molarity when PbCl2PbCl2 precipitation begins? concentration of Cl−=Cl−= M What is the concentration...
A solution contains 0.028 M Ag and 0.032 M Pb2 . If you add Cl–, AgCl...
A solution contains 0.028 M Ag and 0.032 M Pb2 . If you add Cl–, AgCl and PbCl2 will begin to precipitate. What is the concentration of Cl– required, in molarity, when: A. AgCl precipitation begins? B. AgCl precipitation is 99.99% complete? C. PbCl2 precipitation begins? D. PbCl2 precipitation is 99.99% complete? Finally, give the concentration range of Cl– for the complete precipitation of Ag and Pb2 . E. Concentration of Cl– at the start of precipitation: F. Concentration of...
A solution contains 0.041 M Ag and 0.047 M Pb2 . If you add Cl–, AgCl...
A solution contains 0.041 M Ag and 0.047 M Pb2 . If you add Cl–, AgCl and PbCl2 will begin to precipitate. What is the concentration of Cl– required, in molarity, when A. AgCl precipitation begins? B. AgCl precipitation is 99.99% complete? C. PbCl2 precipitation begins? D. PbCl2 precipitation is 99.99% complete? Finally, give the Cl– concentration range in which Ag can be completely separated from Pb2 by precipitation. E. Give the lowest Cl– concentration for the F. Give the...
A solution contains 0.0110 M Pb2 (aq) and 0.0110 M Sr2 (aq). If we add SO42–(aq),...
A solution contains 0.0110 M Pb2 (aq) and 0.0110 M Sr2 (aq). If we add SO42–(aq), what will be the concentration of Pb2 (aq) when SrSO4(s) begins to precipitate?
Mercury ions (Hg2+2) can be removed from solution by precipitation with Cl−. Suppose that a solution...
Mercury ions (Hg2+2) can be removed from solution by precipitation with Cl−. Suppose that a solution contains aqueous Hg2(NO3)2. Express your answer as a chemical equation. Identify all of the phases in your answer. A)Write complete ionic equation to show the reaction of aqueous Hg2(NO3)2 with aqueous sodium chloride to form solid Hg2Cl2 and aqueous sodium nitrate. B)Write net ionic equation to show the reaction of aqueous Hg2(NO3)2 with aqueous sodium chloride to form solid Hg2Cl2 and aqueous sodium nitrate.
Suppose a solution contains 0.28 M Pb2 and 0.46 M Al3 . Calculate the pH range...
Suppose a solution contains 0.28 M Pb2 and 0.46 M Al3 . Calculate the pH range that would allow Al(OH)3 to precipitate but not Pb(OH)2. The Ksp values for Al(OH)3 and Pb(OH)2 can be found here.
Suppose a solution contains 0.22 M Pb2 and 0.49 M Al3 . Calculate the pH range...
Suppose a solution contains 0.22 M Pb2 and 0.49 M Al3 . Calculate the pH range that would allow Al(OH)3 to precipitate but not Pb(OH)2. The Ksp values for Al(OH)3 and Pb(OH)2 can be found here.
A solution contains one or more of the following ions: Hg2+2, Ba2+, and Fe2+. When potassium...
A solution contains one or more of the following ions: Hg2+2, Ba2+, and Fe2+. When potassium chloride is added to the solution, a precipitate forms. The precipitate is filtered off and potassium sulfate is added to the remaining solution, producing no precipitate. When potassium carbonate is added to the remaining solution, a precipitate forms. Part B Write net ionic equations for the formation of each of the precipitates observed. Express your answers as chemical equations separated by a comma. Identify...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT