In: Statistics and Probability
The following table contains information of 11 years of quaterly sales for KYRYH product
Year |
Q1 |
Q2 |
Q3 |
Q4 |
Total |
2006 |
37000 |
31000 |
27500 |
33800 |
129300 |
2007 |
38500 |
31700 |
27000 |
35000 |
132200 |
2008 |
40000 |
33000 |
28400 |
36000 |
137400 |
2009 |
41320 |
33000 |
29300 |
35800 |
139420 |
2010 |
42600 |
35200 |
30300 |
38400 |
146500 |
2011 |
42000 |
33000 |
28500 |
39000 |
142500 |
2012 |
43000 |
37800 |
32300 |
40600 |
153700 |
2013 |
47000 |
37000 |
31200 |
40000 |
155200 |
2014 |
46000 |
39000 |
28000 |
40500 |
153500 |
2015 |
49000 |
42300 |
33500 |
44000 |
168800 |
2016 |
52700 |
44000 |
33600 |
45700 |
176000 |
a) Determine the demand using mobile average
b) Comment on the validity of the model based on the confidence level of 95%
ARIMA
Call:
arima(x = t1$State, order = c(0, 0, 1))
Coefficients:
ma1 intercept
1.0000 532317.887
s.e. 0.0862 8065.284
sigma^2 estimated as 796544702: log likelihood = -561.95, aic = 1129.91
Training set error measures:
ME RMSE MAE MPE MAPE MASE ACF1
Training set 434.6242 28223.12 24476.33 -0.4190657 4.569171
4.436563 0.8137388
Exponential smoothing
Forecast method: Simple exponential smoothing
Model Information:
Simple exponential smoothing
Call:
ses(y = t1$State, h = 4, alpha = 0.2)
Smoothing parameters:
alpha = 0.2
Initial states:
l = 473812.6462
sigma: 20094.36
AIC AICc BIC
1138.961 1139.228 1142.704
Error measures:
ME RMSE MAE MPE MAPE MASE ACF1
Training set 14706.09 19671.27 17171.55 2.601553 3.122986 3.112504
0.8402502
Linear Regression
Call:
tslm(formula = State ~ trend, data = ts1)
Residuals:
Min 1Q Median 3Q Max
-34310 -7266 5109 13597 20552
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 442000.0 4761.4 92.83 <2e-16 ***
trend 3659.0 169.2 21.63 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 16240 on 46 degrees of freedom
Multiple R-squared: 0.9105, Adjusted R-squared: 0.9085
F-statistic: 467.8 on 1 and 46 DF, p-value: < 2.2e-16
MAPE: 0.02580109
MSE: 252657325
Linear trend has the least MAPE so I would use that. Also, from the graph it is clear that linear trend gives the best result. The values of MAPE and MSE are all mentioned in the model results above.