Question

In: Physics

A mass m, stretches horizontally from a spring which has spring constant k, and is subjected...

A mass m, stretches horizontally from a spring which has spring constant k, and is subjected to a retarding force equal to bv, where v is the instantaneous velocity of the mass. A particle of mass 10 gm moves along the x axis under the influence of two forces. The first is a force (in g cm s-2) of attraction to the origin O which is 40 times the distance from O. The second is a damping force proportional to the instantaneous speed. When the speed is 10 cm/s, the damping force is 200 g cms-2. The particle starts from rest at a distance 20 cm from O.

a) Draw a free body diagram of the system.

b) find the differential equation for the motion.

c) What are the amplitude, period and frequency of the oscillation

Solutions

Expert Solution


Related Solutions

1. A block of mass m attached to a spring with spring constant k oscillates horizontally...
1. A block of mass m attached to a spring with spring constant k oscillates horizontally on a frictionless table. Its velocity is 20 cm/s when x = -5 cm. Taking m = 100 gm, and spring constant = 2.5 N/m, a) Find out the equations of position, velocity, and acceleration of the ball. Find also the total energy of the block when its velocity was 20 cm/s. b) Oscillating particles generate waves. What will be the equation of a...
A particle of mass m is attached to a spring with a spring constant k. The...
A particle of mass m is attached to a spring with a spring constant k. The other end of the spring is forced to move in a circle in the x ? y plane of radius R and angular frequency ?. The particle itself can move in all 3 directions. Write down the Lagrangian, and derive the equations of motion.
Consider a mass spring system. The spring has a constant k=30N/m and mass=3kg. The mass oscillates...
Consider a mass spring system. The spring has a constant k=30N/m and mass=3kg. The mass oscillates w/amplitude of 10cm. a.)what is the frequency of oscillation b.) what is the displacement at time t=0 c.) when is the first time the mass is at maximum displacement? (t=?) d.) what is the maximum acceleration felt by the mass? Where in the motion does this occur? e.)what is the minimum acceleration felt by the mass? Where in the motion does this occur? f.)What...
10. It has a mass m attached to a spring of elastic constant k and that...
10. It has a mass m attached to a spring of elastic constant k and that suffers a damping b proportional to the speed, being b = k / 2. If the initial amplitude is A: a) How long does it take until the amplitude is worth A / 2? b) How long does it take until half of the initial energy has dissipated?
A mass m = 3.27 kg is attached to a spring of force constant k =...
A mass m = 3.27 kg is attached to a spring of force constant k = 60.9 N/m and set into oscillation on a horizontal frictionless surface by stretching it an amount A = 0.17 m from its equilibrium position and then releasing it. The figure below shows the oscillating mass and the particle on the associated reference circle at some time after its release. The reference circle has a radius A, and the particle traveling on the reference circle...
A mass m = 1 kg is attached to a spring with constant k = 4...
A mass m = 1 kg is attached to a spring with constant k = 4 N/m and a dashpot with variable damping coefficient c. If the mass is to be pulled 5 m beyond its equilibrium (stretching the spring) and released with zero velocity, what value of c ensures that the mass will pass through the equilibrium position and compress the spring exactly 1 m before reversing direction? c =
A mass m=4 is attached to both a spring with spring constant k=145 and a dash-pot...
A mass m=4 is attached to both a spring with spring constant k=145 and a dash-pot with damping constant c=4. The ball is started in motion with initial position x0=1 and initial velocity v0=6 . Determine the position function x(t) . x(t)=? Note that, in this problem, the motion of the spring is underdamped, therefore the solution can be written in the form x(t)=c1e^(-ρt)cos(ω1t-α1) . Determine c1, ω1, ρ and α1. c1=? ω1=? ρ=? α1=? Graph the function x(t) together...
a block of mass m=0.10 kg attached to a spring whose spring constant is k=2.5 N/m...
a block of mass m=0.10 kg attached to a spring whose spring constant is k=2.5 N/m . At t=0.2s, the displacement x=-0.3m, and the velocity v=-2.0m/s a) find the equation of displacement as a function of time b) sketch the displacement as a function of time for the first cycle starting t=0s
Consider a classical harmonic oscillator of mass m and spring constant k . What is the...
Consider a classical harmonic oscillator of mass m and spring constant k . What is the probability density for finding the particle at position x ? How does this compare to the probability density for the ground state of a quantum mechanical harmonic oscillator
When a 0.43 kg mass is hung from a certain spring it stretches 0.12 m to...
When a 0.43 kg mass is hung from a certain spring it stretches 0.12 m to its equilibrium position at point P. If this mass is pulled down 0.157 m from point P and released, what is the magnitude of the velocity in m/s of this mass 0.0321 m from point P?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT