Question

In: Physics

A mass m = 3.27 kg is attached to a spring of force constant k =...

A mass

m = 3.27 kg

is attached to a spring of force constant

k = 60.9 N/m

and set into oscillation on a horizontal frictionless surface by stretching it an amount

A = 0.17 m

from its equilibrium position and then releasing it. The figure below shows the oscillating mass and the particle on the associated reference circle at some time after its release. The reference circle has a radius A, and the particle traveling on the reference circle has a constant counterclockwise angular speed ω, constant tangential speed

V = ωA,

and centripetal acceleration of constant magnitude

ac = ω2A.


(a) Determine the following.

maximum speed of the oscillating mass
m/s

magnitude of the maximum acceleration of the oscillating mass
m/s2

magnitude of the maximum force experienced by the oscillating mass
N

maximum kinetic energy of the oscillating mass
J

maximum elastic potential energy of the spring attached to the mass
J

total energy of the oscillating mass-spring system
J


(b) If the record of time starts when

x = +A

and

v = 0,

determine expressions for the displacement, velocity, and acceleration of the oscillating mass along the x-axis at any time t later. (Your expression should be in terms of the variable t and other numerical values. Assume any numerical values in your expression are in standard SI units, but do not enter units into your expression.)

x =    
v =    
a =    


(c) If the record of time starts when

x = 0

and

v = +ωA,

determine expressions for the displacement, velocity, and acceleration of the oscillating mass along the x-axis at any time t later. (Your expression should be in terms of the variable t and other numerical values. Assume any numerical values in your expression are in standard SI units, but do not enter units into your expression.)

x =    
v =    
a =    

Solutions

Expert Solution


Related Solutions

A mass m = 1 kg is attached to a spring with constant k = 4...
A mass m = 1 kg is attached to a spring with constant k = 4 N/m and a dashpot with variable damping coefficient c. If the mass is to be pulled 5 m beyond its equilibrium (stretching the spring) and released with zero velocity, what value of c ensures that the mass will pass through the equilibrium position and compress the spring exactly 1 m before reversing direction? c =
A particle of mass m is attached to a spring with a spring constant k. The...
A particle of mass m is attached to a spring with a spring constant k. The other end of the spring is forced to move in a circle in the x ? y plane of radius R and angular frequency ?. The particle itself can move in all 3 directions. Write down the Lagrangian, and derive the equations of motion.
A particle of mass 2.00 kg is attached to a spring with a force constant of...
A particle of mass 2.00 kg is attached to a spring with a force constant of 300 N/m. It is oscillating on a horizontal frictionless surface with an amplitude of 4.00 m. A 7.00 kg object is dropped vertically on top of the 2.00 kg object as it passes through its equilibrium point. The two objects stick together. (a) Does the amplitude of the vibrating system increase or decrease as a result of the collision? decreases increases no change (b)By...
A particle of mass 4.00 kg is attached to a spring with a force constant of...
A particle of mass 4.00 kg is attached to a spring with a force constant of 300 N/m. It is oscillating on a horizontal frictionless surface with an amplitude of 5.00 m. A 9.00 kg object is dropped vertically on top of the 4.00 kg object as it passes through its equilibrium point. The two objects stick together. a) By how much does the amplitude of the vibrating system change as a result of collision? b) By how much does...
a block of mass m=0.10 kg attached to a spring whose spring constant is k=2.5 N/m...
a block of mass m=0.10 kg attached to a spring whose spring constant is k=2.5 N/m . At t=0.2s, the displacement x=-0.3m, and the velocity v=-2.0m/s a) find the equation of displacement as a function of time b) sketch the displacement as a function of time for the first cycle starting t=0s
A 0.900-kg block attached to a spring with force constant k = 1.20 N/m oscillates with...
A 0.900-kg block attached to a spring with force constant k = 1.20 N/m oscillates with an amplitude equal to half its natural length. The natural (un-stretched) length of the spring is 18.0 cm. (a) When submitting your work, sketch the figure below illustrating the position, and directly underneath that, the velocity of the mass as a function of time. Assume that x = 9.00 cm and v =0 m/s when t = 0.00 s. Label the amplitude A and...
A block of mass m = 2.5 kg is attached to a spring with spring constant...
A block of mass m = 2.5 kg is attached to a spring with spring constant k = 640 N/m. It is initially at rest on an inclined plane that is at an angle of θ = 27° with respect to the horizontal, and the coefficient of kinetic friction between the block and the plane is μk = 0.11. In the initial position, where the spring is compressed by a distance of d = 0.19 m, the mass is at...
An object with mass 3.5 kg is attached to a spring with spring stiffness constant k...
An object with mass 3.5 kg is attached to a spring with spring stiffness constant k = 270 N/m and is executing simple harmonic motion. When the object is 0.020 m from its equilibrium position, it is moving with a speed of 0.55 m/s.(a) Calculate the amplitude of the motion._____ m(b) Calculate the maximum velocity attained by the object. [Hint: Use conservation of energy.]______ m/s
A 0.770-kg mass attached to a vertical spring of force constant 147 N/m oscillates with a...
A 0.770-kg mass attached to a vertical spring of force constant 147 N/m oscillates with a maximum speed of 0.322 m/s. Calculate the period related to the motion of the mass. Calculate the amplitude. Calculate the maximum magnitude of the acceleration.
A 0.92 kg mass is attached to a light spring with a force constant of 30.9...
A 0.92 kg mass is attached to a light spring with a force constant of 30.9 N/m and set into oscillation on a horizontal friction-less surface. If the spring is stretched 5.0 cm and released from rest, determine the following. (a) maximum speed of the oscillating mass? in m/s ? (b) speed of the oscillating mass when the spring is compressed 1.5 cm? in m/s ? (c) speed of the oscillating mass as it passes the point 1.5 cm from...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT