Question

In: Physics

1. A block of mass m attached to a spring with spring constant k oscillates horizontally...

1. A block of mass m attached to a spring with spring constant k oscillates horizontally on a frictionless table. Its velocity is 20 cm/s when x = -5 cm. Taking m = 100 gm, and spring constant = 2.5 N/m,

a) Find out the equations of position, velocity, and acceleration of the ball. Find also the total energy of the block when its velocity was 20 cm/s.

b) Oscillating particles generate waves. What will be the equation of a wave generated by an oscillation from part (a), that is travelling with a speed of 5 m/s with a frequency of 100 Hz? The wave has 2.0 cm between the top of the crests and the bottom of the troughs. Is the wave making an audible sound?

c) If the wave in part b) was travelling through a 2 m long string held at a tension of 10 N, what would be the mass of the string?

d) If the set-up of part a), i.e., the source of the wave moves away with a speed 20 m/s, what will be the frequency of the wave generated?

Solutions

Expert Solution


Related Solutions

A 190 g block attached to a spring with spring constant 2.8 N/m oscillates horizontally on...
A 190 g block attached to a spring with spring constant 2.8 N/m oscillates horizontally on a frictionless table. Its velocity is 20 cm/s when x0 = -5.3 cm . a) What is the amplitude of oscillation? b) What is the block's maximum acceleration? c) What is the block's position when the acceleration is maximum? d) What is the speed of the block when x1 = 2.7 cm ?
A 170 g block attached to a spring with spring constant 2.1 N/m oscillates horizontally on...
A 170 g block attached to a spring with spring constant 2.1 N/m oscillates horizontally on a frictionless table. Its velocity is 19 cm/s when x0 = -4.0 cm . A) What is the amplitude of oscillation? B) What is the block's maximum acceleration? C) What is the block's position when the acceleration is maximum? D) What is the speed of the block when x1 = 3.3 cm ?
A 200 g block attached to a spring with spring constant 2.1 N/m oscillates horizontally on...
A 200 g block attached to a spring with spring constant 2.1 N/m oscillates horizontally on a frictionless table. Its velocity is 20 cm/s when x0 = -4.6 cm . A. What is the amplitude of oscillation? B. What is the block's maximum acceleration? C. What is the block's position when the acceleration is maximum? D. What is the speed of the block when x1 = 3.2 cm ?
A 0.900-kg block attached to a spring with force constant k = 1.20 N/m oscillates with...
A 0.900-kg block attached to a spring with force constant k = 1.20 N/m oscillates with an amplitude equal to half its natural length. The natural (un-stretched) length of the spring is 18.0 cm. (a) When submitting your work, sketch the figure below illustrating the position, and directly underneath that, the velocity of the mass as a function of time. Assume that x = 9.00 cm and v =0 m/s when t = 0.00 s. Label the amplitude A and...
A block with a mass M is attached to a horizontal spring with a spring constant...
A block with a mass M is attached to a horizontal spring with a spring constant k. Then attached to this block is a pendulum with a very light string holding a mass m attached to it. What are the two equations of motion? (b) What would these equations be if we assumed small x and φ? (Do note that these equations will turn out a little messy, and in fact, the two equations involve both variables (i.e. they are...
A particle of mass m = 1 oscillates without friction attached to a spring with k...
A particle of mass m = 1 oscillates without friction attached to a spring with k = 4. The motion of the particle is driven by the external force F(t) = 3 t cos(t). Find the equation of motion and solve it. Discuss the physical meaning of the solution.
A particle of mass m is attached to a spring with a spring constant k. The...
A particle of mass m is attached to a spring with a spring constant k. The other end of the spring is forced to move in a circle in the x ? y plane of radius R and angular frequency ?. The particle itself can move in all 3 directions. Write down the Lagrangian, and derive the equations of motion.
a block of mass m=0.10 kg attached to a spring whose spring constant is k=2.5 N/m...
a block of mass m=0.10 kg attached to a spring whose spring constant is k=2.5 N/m . At t=0.2s, the displacement x=-0.3m, and the velocity v=-2.0m/s a) find the equation of displacement as a function of time b) sketch the displacement as a function of time for the first cycle starting t=0s
A block of mass m = 2.5 kg is attached to a spring with spring constant...
A block of mass m = 2.5 kg is attached to a spring with spring constant k = 640 N/m. It is initially at rest on an inclined plane that is at an angle of θ = 27° with respect to the horizontal, and the coefficient of kinetic friction between the block and the plane is μk = 0.11. In the initial position, where the spring is compressed by a distance of d = 0.19 m, the mass is at...
A block of mass m = 2.6kg is attached to a single spring of spring constant...
A block of mass m = 2.6kg is attached to a single spring of spring constant k = 4.4Nmand allowed to oscillate on a horizontal, frictionless surface while restricted to move in the x-direction. The equilibrium position of the block is x=0m. At time t=0s the mass is at position x=2.7m and moving with x-component of velocity vx=−6.8ms. What is the x-component of velocity at time t=1.3s? Answer in meters per second.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT