Question

In: Advanced Math

Find the finite-difference solution of the heat-conduction problem PDE: ut = uxx 0 < x <...

Find the finite-difference solution of the heat-conduction problem
PDE: ut = uxx 0 < x < 1, 0 < t < 1
BCs:

u(0, t) = 0
ux(1, t) = 0
0 < t < 1
IC: u(x, 0) = sin(pi x) 0 x  1
for t = 0.005, 0.010, 0.015 by the explicit method. Assume

Solutions

Expert Solution

solution:

function [y]=pdeeq()

format long;
h=0.1;
k=0.005;
l=k/(h^2);

x=0:h:1;
t=0:k:0.015;

for i=1:length(x)
u(i,1)=sin(pi*x(i));
end
for i=1:length(t)
u(1,i)=0;
u(length(x),i)=0;
end

for j=1:length(t)-1
for i=2:length(x)-1
u(i,j+1)=l*(u(i+1,j)+u(i-1,j))+(1-2*l)*u(i,j);
end
end

disp(u);

Solution:

    

             t=0                             t=0.005                  t=0.010                t=0.015

                0                   0                   0                   0
   0.309016994374947   0.293892626146237   0.279508497187474   0.265828377610012
   0.587785252292473   0.559016994374947   0.531656755220025   0.505635621484342
   0.809016994374947   0.769420884293813   0.731762745781211   0.695947727757254
   0.951056516295154   0.904508497187474   0.860238700294483   0.818135621484342
   1.000000000000000   0.951056516295154   0.904508497187474   0.860238700294484
   0.951056516295154   0.904508497187474   0.860238700294484   0.818135621484342
   0.809016994374947   0.769420884293814   0.731762745781211   0.695947727757254
   0.587785252292473   0.559016994374947   0.531656755220025   0.505635621484342
   0.309016994374948   0.293892626146237   0.279508497187474   0.265828377610013
                   0                   0                   0                   0


Related Solutions

(PDE) Find the series soln to Ut=Uxx on -2<x<2, T>0 with Dirichlet boundary { U(t,-2)=0=U(t, 2)...
(PDE) Find the series soln to Ut=Uxx on -2<x<2, T>0 with Dirichlet boundary { U(t,-2)=0=U(t, 2) initial condition { U(0,x) = { x, IxI <1
Find the unique solution u of the parabolic boundary value problem Ut −Uxx =e^(−t)*sin(3x), 0<x<π, t>0,...
Find the unique solution u of the parabolic boundary value problem Ut −Uxx =e^(−t)*sin(3x), 0<x<π, t>0, U(0,t) = U(π,t) = 0, t > 0, U(x, 0) = e^(π), 0 ≤ x ≤ π.
Solve the following heat equation using Fourier Series uxx = ut, 0 < x < 1,...
Solve the following heat equation using Fourier Series uxx = ut, 0 < x < 1, t > 0, u(0,t) = 0 = u(1,t), u(x,0) = x/2
Solve the following heat equation using Fourier Series uxx = ut, 0 < x < pi,...
Solve the following heat equation using Fourier Series uxx = ut, 0 < x < pi, t > 0, u(0,t) = 0 = u(pi,t), u(x,0) = sinx - sin3x
Solve the following heat equation using Fourier Series uxx = ut, 0 < x < 1,...
Solve the following heat equation using Fourier Series uxx = ut, 0 < x < 1, t > 0, ux(0,t) = 0 = ux(1,t), u(x,0) = 1 - x2
Solve the initial value problem Utt = c^2Uxx, u(0,x)= e^-x^2 , Ut(0,x) = sin x (PDE)
Solve the initial value problem Utt = c^2Uxx, u(0,x)= e^-x^2 , Ut(0,x) = sin x (PDE)
Solve the Boundary Value Problem, PDE: Utt-a2uxx=0, 0≤x≤1, 0≤t<∞ BCs: u(0,t)=0 u(1,t)=cos(t) u(x,0)=0 ut(x,0)=0
Solve the Boundary Value Problem, PDE: Utt-a2uxx=0, 0≤x≤1, 0≤t<∞ BCs: u(0,t)=0 u(1,t)=cos(t) u(x,0)=0 ut(x,0)=0
Find the solution to the heat equation on 0 < x < l, with u(0, t)...
Find the solution to the heat equation on 0 < x < l, with u(0, t) = 0, ux(l, t) = 0, and u(x, 0) = phi(x). This is sometimes called a "mixed" boundary condition.
Consider the nonhomogenous heat equation with time dependent sources ut = uxx + xt, an initial...
Consider the nonhomogenous heat equation with time dependent sources ut = uxx + xt, an initial condition u(x, 0) = x2 and inhomogenous boundary conditions ux(0, t) = 2t and ux(1, t) = 4. Use eigen function expansion to find the solution u(x, t).
Derive a finite-difference method for solving the non-linear parabolic equation using the Explicit Method Ut=v*Uxx-U*Ux Where...
Derive a finite-difference method for solving the non-linear parabolic equation using the Explicit Method Ut=v*Uxx-U*Ux Where v is the viscosity
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT