In: Math
We have ellipse \( x^2/a^2 +y^2/b^2 =1 \).
Show that the polar equation the ellipse.
\( x^2/a^2 +y^2/b^2 =1 \) is \( r^2=b^2/(1-e^2cos^2θ) \)
Solution:
We know that in polar coordinate \( x=rcos(θ) \) and \( y=rsin(θ) \)
The ellipse equation become
\( =>x^2/a^2+y^2/b^2=1 =>(rcosθ)^2/a^2+(rsinθ)^2/b^2=1 \)
\( =>r^2(cos^2θ/a^2+sin^2θ/b^2)=1 \)
\( =>r^2(b^2cos^2θ+a^2sin^2θ)=a^2b^2 \)
\( =>r^2=a^2b^2/(b^2cos^2θ+a^2sin^2θ) \)
In ellipse we know \( e^2=(a^2-b^2)/a^2 \) . Then add few term to equation.
\( =>r^2=a^2b^2/(b^2cos^2θ+a^2sin^2θ-a^2cos^2θ+a^2cos^2θ) \)
\( =>r^2=a^2b^2/((b^2-a^2)cos^2θ+a^2) \) divide numerator and denominator by \( a^2 \)
\( =>r^2=b^2/[((b^2-a^2)/a^2)cos^2θ+1] \)
\( =>r^2=b^2/(1-e^2cos^2θ) \)
Therefore, the polar equation of ellipse \( x^2/a^2+y^2/b^2=1 \) is \( r^2=b^2/(1-e^2cos^2θ) \)
Therefore, the polar equation of ellipse
\( x^2/a^2 +y^2/b^2 =1 \) is \( r^2=b^2/(1-e^2cos^2θ) \)