In: Math
If the roots of the quadratic equation x² + px + q = 0 are tan 300 and tan 150, respectively then the value of 2+q-p is
(a) 2
(b) 3
(c) 0
(d) 1
Given that x² + px + q = 0
Sum of roots = tan 300 + tan 150 = -p
Product of roots = tan 300 tan 150 = q
We know tan (a+b) = (tan a + tan b)/(1- tan a tan b)
tan 450 = tan (30 + 15)0
1 = (tan 300 + tan 150)/(1 – tan 300tan 150)
1 = -p/(1-q)
=> 1-q = -p
q-p = 1
2+q-p = 2+1
= 3
Hence option b is the answer.
Value of 2+p-q is 3