Question

In: Physics

a nonconducting thin spherical shell of radius 6.00 cm has a uniform density of 9.00 nC/m^2....


a nonconducting thin spherical shell of radius 6.00 cm has a uniform density of 9.00 nC/m^2.
a. what is the total charge on the shell
b. what is the electric field at a distance of 2.00 cm from the center of the shell?
c. what is the electric field a distance 10.0 cm from the center of the shell.

Solutions

Expert Solution

a.

The radius of the thin spherical shell is

r = 6.00 cm

The surface area of the thin spherical shell is

A = 4r2

Charge desnity of the ono conducting thin spherical shell is

= 9.00 nC/m2

Now, the total charge on the shell is

Q = A

    = 4r2

Substitute 6.00 cm for r and 9.00 nC/ m2 for in the above equation,

Rounding off to three significant figures, the total charge on the thin spherical shell is 4.07 x 10-10 C.

b.

The electric field at any points inside a thin spherical shell is always zero.

As the distance 2.00 cm from the centre of the spherical shell lies inside it, the electric field is zero.

Therefore, the electric field at a distance of 2.00 cm from the center of the shell is zero.

c.

The electric field outside the thin spherical shell at a point x from its center is

Here, permittivity of free space is 0.

Substitute 4.07 x 10-10 C for Q, 1.25663706 × 10-6 m kg /s2 A2 for 0 and 10.0 cm for x in the above equation,

Rounding off to three significant figures, the electric field a distance 10.0 cm from the center of the thin spherical shell is 3.66 x 102 N/C.


Related Solutions

A nonconducting spherical shell of inner radius a = 2.00 cm and outer radius b =...
A nonconducting spherical shell of inner radius a = 2.00 cm and outer radius b = 2.40 cm has (within its thickness) a positive volume charge density p = A/r, where A is a constant and r is the distance from the center of the shell. In addition, a small ball of charge q = 4.5 x 10 ^ -14 C is located at the center of that center. Find the total charge of the shell.
A charge of uniform linear density 2.20 nC/m is distributed along a long, thin, nonconducting rod....
A charge of uniform linear density 2.20 nC/m is distributed along a long, thin, nonconducting rod. The rod is coaxial with a long conducting cylindrical shell (inner radius = 4.00 cm, outer radius = 9.00 cm). The net charge on the shell is zero. (a) What is the magnitude of the electric field at distance r = 13.0 cm from the axis of the shell? What is the surface charge density on the (b) inner and (c) outer surface of...
A straight, nonconducting plastic wire 9.00 cm long carries a charge density of 125 nC/m distributed...
A straight, nonconducting plastic wire 9.00 cm long carries a charge density of 125 nC/m distributed uniformly along its length. It is lying on a horizontal tabletop. A) Find the magnitude and direction of the electric field this wire produces at a point 6.00 cm directly above its midpoint. B) If the wire is now bent into a circle lying flat on the table, find the magnitude and direction of the electric field it produces at a point 6.00 cm...
A uniform spherical shell of mass M = 2.0 kg and radius R = 13.0 cm...
A uniform spherical shell of mass M = 2.0 kg and radius R = 13.0 cm rotates about a vertical axis on frictionless bearings (see the figure). A massless cord passes around the equator of the shell, over a pulley of rotational inertia I = 1.92×10-3 kg m2 and radius r = 4.0 cm, and its attached to a small object of mass m = 4.0 kg. There is no friction on the pulley's axle; the cord does not slip...
A spherical shell of radius a has a uniform surface charge density σ and rotates with...
A spherical shell of radius a has a uniform surface charge density σ and rotates with a constant angular velocity ω in relation to an axis that passes through its center. In this situation, determine the magnetic dipole moment μ of the spherical shell.
A thin-walled metal spherical shell of radius a = 1.80 cm has a charge qa =...
A thin-walled metal spherical shell of radius a = 1.80 cm has a charge qa = 8.00×10-6C. Concentric with it is a thin-walled metal spherical shell of radius b = 5.20 cm and charge qb = 2.50×10-6 C. Find the electric field at distance r = 0 cm from the common center. Tries 0/10 Find the electric field at distance r = 3.70 cm from the common center. Tries 0/10 Find the electric field at distance r = 8.90 cm...
Consider a thin, spherical shell of radius 12.0 cm with a total charge of 34.8 µC...
Consider a thin, spherical shell of radius 12.0 cm with a total charge of 34.8 µC distributed uniformly on its surface. (a) Find the electric field 10.0 cm from the center of the charge distribution. magnitude MN/C direction ---Select--- radially inward radially outward the electric field is zero (b) Find the electric field 22.0 cm from the center of the charge distribution. magnitude MN/C direction
PART A A metallic spherical thin shell of radius 0.1 m is charged with a negative...
PART A A metallic spherical thin shell of radius 0.1 m is charged with a negative charge of 1 μC a) With what minimum initial velocity should I launch an electron from very far away so that it can reach the surface of the spherical shell? b) With what minimum initial velocity should I launch a proton from very far away so that it can reach the surface of the spherical shell? c) What is the value of the electric...
The figure shows a spherical shell with uniform volume charge density ρ = 2.18 nC/m3, inner...
The figure shows a spherical shell with uniform volume charge density ρ = 2.18 nC/m3, inner radius a = 9.30 cm, and outer radius b = 2.6a. What is the magnitude of the electric field at radial distances (a) r = 0; (b) r = a/2.00, (c) r = a, (d) r = 1.50a, (e) r = b, and (f) r = 3.00b?
The figure shows a spherical shell with uniform volume charge density ρ = 1.88 nC/m3, inner...
The figure shows a spherical shell with uniform volume charge density ρ = 1.88 nC/m3, inner radius a = 9.70 cm, and outer radius b = 3.4a. What is the magnitude of the electric field at radial distances (a) r = 0; (b) r = a/2.00, (c) r = a, (d) r = 1.50a, (e) r = b, and (f) r = 3.00b?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT