Question

In: Physics

PART A A metallic spherical thin shell of radius 0.1 m is charged with a negative...

PART A
A metallic spherical thin shell of radius 0.1 m is charged with a negative charge of 1 μC
a) With what minimum initial velocity should I launch an electron from very far
away so that it can reach the surface of the spherical shell?
b) With what minimum initial velocity should I launch a proton from very far
away so that it can reach the surface of the spherical shell?
c) What is the value of the electric field close to the surface of the shell?
d) If this shell is then put in contact through an electrical wire with another
metallic spherical thin shell of radius 0.05 m which is far away from the first
one and initially discharged, what will be the new value of the electric field near
the surface of the first shell?
e) What will be the value of the electric field near the surface of the second shell?
f) What are the energies of the configurations of charges before and after
connecting the two spheres with the wire
PART B
g) Imagine that the wire used in part d) to connect both spheres does not have a
negligible resistance and has instead a resistance of 1000 W . How would the
answers to d) ,e,) and f) change?
h) Explain in words what would be the difference between both cases.
PART C
i) Remove the wire connecting to the smaller sphere ( which is far away) and
just concentrate on the larger sphere .
j) Draw the magnitude of electric field as a function of the distance from the
center of that sphere. What is the value of that electric field at the following
distances from the center ( 0.2 m , 0.3 m, 0.4 m, )
k) Place a surrounding metallic hollow sphere of inner radius 0.25 m and outer
radius 0.35 m centered at the same point where your original sphere is. That
sphere is given a total charge of + 0. 8 μC.. but not connected or touching in
any way the original sphere. What is the value now at the same distances from
the center ( 0.2 m , 0.3 m, 0.4 m)?
l) What are the charges in the inner and outer surfaces of the hollow sphere?

Can you help me with part b and c

Solutions

Expert Solution


Related Solutions

A conducting spherical shell with inner radius a=0.1 m and outer radius b=0.5 m has a...
A conducting spherical shell with inner radius a=0.1 m and outer radius b=0.5 m has a positive point charge Q=+5 nC located in its center. The total charge on the shell is -3Q and it is insulated from its surroundings. a. Calculate the surface charge density on the surfaces of the shell. b. Calculate the magnitude of the electric field at a radius of 0.01 m, and at a radius of 1.5 m. c. Sketch the electric field lines in...
Consider a thin, spherical shell of radius 12.0 cm with a total charge of 34.8 µC...
Consider a thin, spherical shell of radius 12.0 cm with a total charge of 34.8 µC distributed uniformly on its surface. (a) Find the electric field 10.0 cm from the center of the charge distribution. magnitude MN/C direction ---Select--- radially inward radially outward the electric field is zero (b) Find the electric field 22.0 cm from the center of the charge distribution. magnitude MN/C direction
A thin-walled metal spherical shell of radius a = 1.80 cm has a charge qa =...
A thin-walled metal spherical shell of radius a = 1.80 cm has a charge qa = 8.00×10-6C. Concentric with it is a thin-walled metal spherical shell of radius b = 5.20 cm and charge qb = 2.50×10-6 C. Find the electric field at distance r = 0 cm from the common center. Tries 0/10 Find the electric field at distance r = 3.70 cm from the common center. Tries 0/10 Find the electric field at distance r = 8.90 cm...
Show that the moment of inertia of a spherical shell of radius R and mass M...
Show that the moment of inertia of a spherical shell of radius R and mass M about an axis through its centre is 2/3 MR2. Show also that the moment of inertia of a uniform solid sphere of radius R and mass M is 2/5MR2. The spheres are allowed to roll (from rest), without slipping a distance L down a plane inclined at a angle θ to the horizontal. Find expressions for the speeds of the spheres at the bottom...
A thin spherical shell of radius R and total charge Q distributed uniformly over its surfacce....
A thin spherical shell of radius R and total charge Q distributed uniformly over its surfacce. 1. Plot resistitivity as a function of temperature for some resonable range of temeratures. 2. Design a resistor made of copper that has a resistance of 50 Ohms at room remperature.
a uniform spherical shell of mass M and radius R rotates about a vertical axis on...
a uniform spherical shell of mass M and radius R rotates about a vertical axis on frictionless bearing. A massless cord passes around the equator of the shell, over a pulley of rotational inertia I and radius r, and is attached to a small object of mass m. There is no friction on the pulley's axle; the cord does not slip on the pulley. What is the speed of the object after it has fallen a distance h from rest?...
A uniform spherical shell of mass M = 2.0 kg and radius R = 13.0 cm...
A uniform spherical shell of mass M = 2.0 kg and radius R = 13.0 cm rotates about a vertical axis on frictionless bearings (see the figure). A massless cord passes around the equator of the shell, over a pulley of rotational inertia I = 1.92×10-3 kg m2 and radius r = 4.0 cm, and its attached to a small object of mass m = 4.0 kg. There is no friction on the pulley's axle; the cord does not slip...
A spherical shell has inner radius RinRin and outer radius RoutRout. The shell contains total charge...
A spherical shell has inner radius RinRin and outer radius RoutRout. The shell contains total charge QQ, uniformly distributed. The interior of the shell is empty of charge and matter. Part A Find the electric field strength outside the shell, r≥Routr≥Rout. Part B Part complete Find the electric field strength in the interior of the shell, r≤Rinr≤Rin. Part C Find the electric field strength within the shell, Rin≤r≤RoutRin≤r≤Rout.
A nonconducting spherical shell of inner radius a = 2.00 cm and outer radius b =...
A nonconducting spherical shell of inner radius a = 2.00 cm and outer radius b = 2.40 cm has (within its thickness) a positive volume charge density p = A/r, where A is a constant and r is the distance from the center of the shell. In addition, a small ball of charge q = 4.5 x 10 ^ -14 C is located at the center of that center. Find the total charge of the shell.
A small conducting spherical shell with inner radius a and outer radius b is concentric with...
A small conducting spherical shell with inner radius a and outer radius b is concentric with a larger conducting spherical shell with inner radius c and outer radius d. The inner shell has a total charge of -1q and the outer shell has a total charge of +3q. Select True or False for the following statements. 1. The total charge on the inner surface of the small shell is -4q. 2. The total charge on the outer surface of the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT