Question

In: Physics

Seven lbm of ammonia in a piston-cylinder assembly, initially at p1 = 60 lbf/in2 and T1...

Seven lbm of ammonia in a piston-cylinder assembly, initially at p1 = 60 lbf/in2 and T1 = 120 (one hundred twenty) oF, undergoes an isobaric process to a final state. The work done on a system is 90 Btu. At the final state, determine the temperature (in oF) and the quality of ammonia.

Solutions

Expert Solution

From given data

i) Mass of ammonia is

ii) Initial state properties are and

iii) Work done on the system is

From property tables of ammonia, for and

i) specific enthalpy of ammonia is

ii) Ammonia is in superheated vapour state.

Let us consider the final specific enthalpy of ammonia is .

Then, the workdone is given by

  

substitute all the known values,

Thus, the specific enthalpy of ammonia at final state is

------------------------------------------------------------------------

Since the process is constant pressure process,

For , saturated specific enthalpy of ammonia vapour is .

Here we get the specific enthalpy at final state .

Thus, the final state of ammonia is also in superheated vapour region only.

Hence there won't exist dryness fraction (or quality) of ammonia at final state.

Now, for a constant pressure process, Change in enthalpy is given by

   ...... (1)

here is specific heat capacity of ammonia at constant pressure.

is temperature of ammonia at final state.

For , specific heat capacity of ammonia at constant pressure is

Substitute all the known values in (1),

  

Thus, the final state temperature of ammonia is


Related Solutions

Air enters the compressor of a simple gas turbine at p1 = 14 lbf/in2, T1 =...
Air enters the compressor of a simple gas turbine at p1 = 14 lbf/in2, T1 = 520°R. The isentropic efficiencies of the compressor and turbine are 83 and 87%, respectively. The compressor pressure ratio is 16 and the temperature at the turbine inlet is 2500°R. The volumetric flow rate of the air entering the compressor is 9000 ft3/min. Use an air-standard analysis. Determine all temperatures at each state. A) Determine the net power developed, in Btu/h. B) Determine the thermal...
Air enters the compressor of a simple gas turbine at p1 = 14 lbf/in2, T1 =...
Air enters the compressor of a simple gas turbine at p1 = 14 lbf/in2, T1 = 520°R. The isentropic efficiencies of the compressor and turbine are 83 and 87%, respectively. The compressor pressure ratio is 16 and the temperature at the turbine inlet is 2500°R. The volumetric flow rate of the air entering the compressor is 9000 ft3/min. Use an air-standard analysis. Determine the net power developed, in Btu/h.
Air enters the compressor of a simple gas turbine at p1 = 14 lbf/in2, T1 =...
Air enters the compressor of a simple gas turbine at p1 = 14 lbf/in2, T1 = 520°R. The isentropic efficiencies of the compressor and turbine are 83 and 87%, respectively. The compressor pressure ratio is 16 and the temperature at the turbine inlet is 2500°R. The volumetric flow rate of the air entering the compressor is 9000 ft3/min. Use an air-standard analysis. Determine the net power developed, in Btu/h.
Air undergoes a polytropic process in a piston–cylinder assembly from p1 = 1 bar, T1 =...
Air undergoes a polytropic process in a piston–cylinder assembly from p1 = 1 bar, T1 = 295 K to p2 = 7 bar. The air is modeled as an ideal gas and kinetic and potential energy effects are negligible. For a polytropic exponent of 1.4, determine the work and heat transfer, each in kJ per kg of air, (1) assuming constant cv evaluated at 300 K. (2) assuming variable specific heats.
Air undergoes a polytropic process in a piston–cylinder assembly from p1 = 1 bar, T1 =...
Air undergoes a polytropic process in a piston–cylinder assembly from p1 = 1 bar, T1 = 295 K to p2 = 3 bar. The air is modeled as an ideal gas and kinetic and potential energy effects are negligible. For a polytropic exponent of 1.2, determine the work and heat transfer, each in kJ per kg of air, (1) assuming constant cv evaluated at 300 K. (2) assuming variable specific heats.
Air undergoes a polytropic process in a piston–cylinder assembly from p1 = 1 bar, T1 =...
Air undergoes a polytropic process in a piston–cylinder assembly from p1 = 1 bar, T1 = 295 K to p2 = 3 bar. The air is modeled as an ideal gas and kinetic and potential energy effects are negligible. For a polytropic exponent of 1.6, determine the work and heat transfer, each in kJ per kg of air, (1) assuming constant cv evaluated at 300 K. (2) assuming variable specific heats.
Steam, initially at 700 lbf/in.2, 550°F undergoes a polytropic process in a piston–cylinder assembly to a...
Steam, initially at 700 lbf/in.2, 550°F undergoes a polytropic process in a piston–cylinder assembly to a final pressure of 2200 lbf/in.2 Kinetic and potential energy effects are negligible. Determine the heat transfer, in Btu per lb of steam, for a polytropic exponent of 1.4, (a) using data from the steam tables. (b) assuming ideal gas behavior.
Air within a piston–cylinder assembly, initially at 15 lbf/ in.2, 510°R, and a volume of 6...
Air within a piston–cylinder assembly, initially at 15 lbf/ in.2, 510°R, and a volume of 6 ft3, is compressed isentropically to a final volume of 1.75 ft3. Assuming the ideal gas model with k = 1.4 for the air, determine the: (a) mass, in lb. (b) final pressure, in lbf/in.2 (c) final temperature, in °R. (d) work, in Btu.
Refrigerant 134a at p1 = 30 lbf/in2, T1 = 40oF enters a compressor operating at steady...
Refrigerant 134a at p1 = 30 lbf/in2, T1 = 40oF enters a compressor operating at steady state with a mass flow rate of 400 lb/h and exits as saturated vapor at p2 = 160 lbf/in2. Heat transfer occurs from the compressor to its surroundings, which are at T0 = 40oF. Changes in kinetic and potential energy can be ignored. The power input to the compressor is 4 hp.   Determine the heat transfer rate for the compressor, in Btu/hr, and the...
A piston–cylinder assembly contains 2 lb of water, initially at 100 lbf/in.2 and 600°F. The water...
A piston–cylinder assembly contains 2 lb of water, initially at 100 lbf/in.2 and 600°F. The water undergoes two processes in series: a constant-pressure process followed by a constant volume process. At the end of the constant-volume process, the temperature is 300°F and the water is a two-phase liquid–vapor mixture with a quality of 50%. Neglect kinetic and potential energy effects. Determine the work and heat transfer for each process, all in Btu.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT