In: Economics
Output per month   Price   Total
Revenue   Total Cost   Total Profit  
Marginal
Revenue*   Marginal Cost*   Average Total
Cost   Profit per Unit (Price Minus Average Cost)
0   $ 1,000     $ 0   $
60,000   -$60,000   -   -  
-   -
100   1,000   100,000  
90,000   10,000   $ 1,000    $
300   $900   $100
200   1,000   200,000  
130,000   70,000   1,000  
400   650   350
300   1,000   300,000  
180,000   120,000   1,000  
500   600   400
400   1,000   400,000  
240,000   160,000   1,000  
600   600   400
500   1,000   500,000  
320,000   180,000   1,000  
800   640   360
600   1,000   600,000  
420,000   180,000   1,000  
1,000   700   300
700   1,000   700,000  
546,000   154,000   1,000  
1,260   780   220
800   1,000   800,000  
720,000   80,000   1,000  
1,740   900   100
900   1,000   900,000  
919,800   -19,800   1,000  
1,998   1,022   -22
*Note that output levels are calibrated in hundreds in this
example; that's why we have divided the change in total costs and
revenues from one output level to another by 100 to calculate
marginal revenue and marginal cost. Very few manufacturers deal in
units of 1.
(a) What were the fixed costs of production for the firm?
$
(b) At what rate of output was profit per computer maximized?
(Choose the highest output level.)
computers per month
(c) At what output rate was total profit maximized? (Choose the highest output level.)
computers per month
| 
 Output  | 
Price ($) | Total
Revenue ($)  | 
Total cost ($)  | 
Total
Profit ($)  | 
Marginal Revenue ($)  | 
Marginal
Cost ($)  | 
Average total
cost ($)  | 
Profit per unit ($)  | 
| 0 | 1000 | 0 | 60000 | -60000 | - | - | - | - | 
| 100 | 1000 | 100000 | 90000 | 10000 | 100000 | 30000 | 900 | 100 | 
| 200 | 1000 | 200000 | 130000 | 70000 | 100000 | 40000 | 650 | 350 | 
| 300 | 1000 | 300000 | 180000 | 120000 | 100000 | 50000 | 600 | 400 | 
| 400 | 1000 | 400000 | 240000 | 160000 | 100000 | 60000 | 600 | 400 | 
| 500 | 1000 | 500000 | 320000 | 180000 | 100000 | 80000 | 640 | 360 | 
| 600 | 1000 | 600000 | 420000 | 180000 | 100000 | 100000 | 700 | 300 | 
| 700 | 1000 | 700000 | 546000 | 154000 | 100000 | 126000 | 780 | 220 | 
| 800 | 1000 | 800000 | 720000 | 80000 | 100000 | 174000 | 900 | 100 | 
| 900 | 1000 | 900000 | 919800 | -19800 | 100000 | 199800 | 1022 | -22 | 
I have rearregnged the table above.
a) Total cost = total variable cost + total fixed cost.
Fixed costs are independent of output and hence even the output
is zero, there will be some amount of fixed cost.
Variable costs are dependent of output. If output is zero, there
will be no variable cost.
Hence if output is zero, total cost = total fixed cost.
In this case, total fixed cost = $60000 (total cost at output =
0)
b) From the profitper unit column above, maximum profit per unit obtained is $400, which is obtained by selling 300 & 400 computers.(marked italic). If we choose the highest output, then 400 computers will obtain maximum profit per unit. (marked bold)
c)From the total profit column above, maximum profit obtained is $18000, which is obtained by selling 500 & 600 computers.(marked italic). If we choose the highest output, then 600 computers will obtain maximum profit. (marked bold)