Question

In: Physics

Suppos you have a block resting on a horizontal smooth surface. The block (with mass m)...

Suppos you have a block resting on a horizontal smooth surface. The block (with mass m) is attached to a horizontal spring (spring constant k), which is fixed at one end. The spring can be compressed and stretched. The mass is pulled to one side and released. The maximum displacement is 15cm.

a) If k=150N/m, calculate the mass of the block.

b) Draw the graphs for velocity and acceleration of the motion. On the graphs, label the maximum values of velocity and accleration, respectively.

c) Draw the graph for kinetic energy and calculate and label on the graph the maximum value of the KE.

d) Draw the graph for the elastic potential energy and calculate and label on the graph the maximum value of the elastic PE.

e) Calculate the numerical value and draw the graph for the total energy.

Solutions

Expert Solution


Related Solutions

A block with mass mA = 15.0 kg on a smooth horizontal surface is connected by...
A block with mass mA = 15.0 kg on a smooth horizontal surface is connected by a thin cord that passes over a pulley to a second block with mass mB = 6.0 kg which hangs vertically. Determine the magnitude of the acceleration of the system. Express your answer to two significant figures and include the appropriate units. If initially mA is at rest 1.250 m from the edge of the table, how long does it take to reach the...
A block with the mass M slides with no friction on a horizontal surface (no friction)...
A block with the mass M slides with no friction on a horizontal surface (no friction) with speed x when it collides and sticks to the second block with also mass M that is attached to a third block with mass M via an ideal spring with spring constant k. Before collision, spring has its natural length and the blocks attached to it are at rest. Find an expression for the maximum kinetic energy of the third block post collision...
A 25-gram block is resting on a horizontal, frictionless surface and is attached to a horizontal...
A 25-gram block is resting on a horizontal, frictionless surface and is attached to a horizontal spring of k = 210 N/m. The spring is stretched so that the block is 27 cm away from the spring’s equilibrium position and released from rest. a) What is the velocity of the block when it passes through the equilibrium point? b) At what distance from equilibrium is the spring’s potential energy equal to the block’s kinetic energy? c) Suppose the block has...
1. A block of mass m is sliding on a horizontal surface. The kinetic coefficient of...
1. A block of mass m is sliding on a horizontal surface. The kinetic coefficient of friction between the block and the surface is µk. The drag force is linear with speed (FD = −ℓv, where ℓ is a constant). The initial velocity of the block is v0. (e) Find x(t) (f) Graph v(t) (g) Graph x(t) (h) Describe your solution in words.
A block of mass m = 98 kg slides along a horizontal surface. The coefficient of...
A block of mass m = 98 kg slides along a horizontal surface. The coefficient of friction between the block and the surface is μk = 0.38. The block has an initial speed of vo = 13 m/s in the positive x-direction as shown. a) write an expression for x-component of the frictional force the block experiences, F(f), in terms of the given variables and variables available in the palette b) what is the magnitude of the frictional force in...
A block of mass m = 1.0 kg sliding along a rough horizontal surface is traveling...
A block of mass m = 1.0 kg sliding along a rough horizontal surface is traveling at a speed v0 = 10.0m/s when it strikes a massless spring head-on (see figure) and compresses the spring a maximum distance X =0.25m. If the spring has stiffness constant k = 100. N/m, determine the coefficient of kinetic friction between block and surface.
A mass resting on a horizontal, frictionless surface is attached to one end of a spring;...
A mass resting on a horizontal, frictionless surface is attached to one end of a spring; the other end is fixed to a wall. It takes 3.7 J of work to compress the spring by 0.14 m . If the spring is compressed, and the mass is released from rest, it experiences a maximum acceleration of 12 m/s2. Find the value of the spring constant. Find the value of the mass.
A block of mass m1=6.6 kg rests on a frictionless horizontal surface. A second block of...
A block of mass m1=6.6 kg rests on a frictionless horizontal surface. A second block of mass m2=9.4 kg hangs from an ideal cord of negligible mass, which runs over an ideal pulley and then is connected to the side of the first block. The blocks are released from rest. How far will block 1 move during the 1.1 second interval?
A 0.200-kg block on a smooth horizontal surface gains a speed of 28.2 cm/s when it...
A 0.200-kg block on a smooth horizontal surface gains a speed of 28.2 cm/s when it is released from rest at the free end of a spring that is compressed by 3.20 cm. The block is then connected to the free end of the spring to form a mass-spring system. What is the spring constant? (A) 15.5 N/m; (B) 16.5 N/m; (C) 17.5 N/m; (D) 18.5 N/m; (E) 19.5 N/m. What is the period of this harmonic oscillator? (A) 0.413...
A block sits on a flat horizontal surface. The block's mass is 100kg. The coefficient of...
A block sits on a flat horizontal surface. The block's mass is 100kg. The coefficient of static friction is 0.3. The coefficient of kinetic friction is 0.25. Find whatis the friction cone angle between the two surfaces in degree?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT