Question

In: Physics

1. A block of mass m is sliding on a horizontal surface. The kinetic coefficient of...

1. A block of mass m is sliding on a horizontal surface. The kinetic coefficient of friction between the block and the surface is µk. The drag force is linear with speed (FD = −ℓv, where ℓ is a constant). The initial velocity of the block is v0.

(e) Find x(t)

(f) Graph v(t)

(g) Graph x(t)

(h) Describe your solution in words.

Solutions

Expert Solution


Related Solutions

A block of mass m = 1.0 kg sliding along a rough horizontal surface is traveling...
A block of mass m = 1.0 kg sliding along a rough horizontal surface is traveling at a speed v0 = 10.0m/s when it strikes a massless spring head-on (see figure) and compresses the spring a maximum distance X =0.25m. If the spring has stiffness constant k = 100. N/m, determine the coefficient of kinetic friction between block and surface.
A block of mass m = 98 kg slides along a horizontal surface. The coefficient of...
A block of mass m = 98 kg slides along a horizontal surface. The coefficient of friction between the block and the surface is μk = 0.38. The block has an initial speed of vo = 13 m/s in the positive x-direction as shown. a) write an expression for x-component of the frictional force the block experiences, F(f), in terms of the given variables and variables available in the palette b) what is the magnitude of the frictional force in...
A mass of 5 kg is placed on a horizontal surface with a coefficient of kinetic...
A mass of 5 kg is placed on a horizontal surface with a coefficient of kinetic friction of 0.4. A force is applied vertically downward to it and another force of 81 Newtons is applied at 14 degrees below the horizontal. As it moves 5 meters in the +x direction it loses 180 Joules of kinetic energy. What is the amount of the force which is applied downward in Newtons?
A 4.00 kg block sits at rest on a rough horizontal surface. The coefficient of kinetic...
A 4.00 kg block sits at rest on a rough horizontal surface. The coefficient of kinetic friction between the block and the surface is 0.275. Attached to the right side of the block is a spring which is also attached to a wall farther to the right. The spring has a spring constant of 220 N/m and is initially neither compressed nor stretched. A bullet of mass 50.0 grams is fired at the block from the left side. The bullet...
A 1.9 kg block slides along a horizontal surface with a coefficient of kinetic friction μk...
A 1.9 kg block slides along a horizontal surface with a coefficient of kinetic friction μk = 0.30. The block has a speed v = 1.4 m/s when it strikes a massless spring head-on. If the spring has force constant k = 120 N/m, how far is the spring compressed? What minimum value of the coefficient of static friction, μS, will assure that the spring remains compressed at the maximum compressed position? If μS is less than this, what is...
A block sits on a flat horizontal surface. The block's mass is 100kg. The coefficient of...
A block sits on a flat horizontal surface. The block's mass is 100kg. The coefficient of static friction is 0.3. The coefficient of kinetic friction is 0.25. Find whatis the friction cone angle between the two surfaces in degree?
A block of mass m1=4.00 kg moves on the surface of a horizontal table. The coefficient...
A block of mass m1=4.00 kg moves on the surface of a horizontal table. The coefficient of kinetic friction between the table top and m1 is equal to 0.350. Block 2 of mass m2=2.00 kg is tied to m1 via a string that passes over a frictionless, massless pulley. The two blocks start from rest and m2drops by a distance L=1.75 m to the floor. Calculate the net work Wnet done by all the forces acting on the system
A block with the mass M slides with no friction on a horizontal surface (no friction)...
A block with the mass M slides with no friction on a horizontal surface (no friction) with speed x when it collides and sticks to the second block with also mass M that is attached to a third block with mass M via an ideal spring with spring constant k. Before collision, spring has its natural length and the blocks attached to it are at rest. Find an expression for the maximum kinetic energy of the third block post collision...
An inclined plane is sliding, and accelerating, on a horizontal frictionless surface. There is a block...
An inclined plane is sliding, and accelerating, on a horizontal frictionless surface. There is a block at rest on the sloping surface, held in place by static friction through the horizontal acceleration of the system. The coefficient of static friction between the block and the inclined plane is 0.615. The slope of the incline plane is 40.5 degrees with respect to the horizontal. What is minimum acceleration of the inclined plane for the square block not to slide? What is...
An inclined plane is sliding, and accelerating, on a horizontal frictionless surface. There is a block...
An inclined plane is sliding, and accelerating, on a horizontal frictionless surface. There is a block at rest on the sloping surface, held in place by a static friction through the horizontal acceleration of the system. the coefficient of static friction between the block and the inclined plane is 0.615. the slope of the incline plane is 42.5 degrees with respect to the horizontal. a) What is the minumum acceleration of the inclined plane for the square block not to...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT