Question

In: Physics

A block of mass m1=6.6 kg rests on a frictionless horizontal surface. A second block of...

A block of mass m1=6.6 kg rests on a frictionless horizontal surface. A second block of mass m2=9.4 kg hangs from an ideal cord of negligible mass, which runs over an ideal pulley and then is connected to the side of the first block. The blocks are released from rest. How far will block 1 move during the 1.1 second interval?

Solutions

Expert Solution

ANSWER :

GIVEN DATA : Mass (M1) = 6.6 kg ; Mass (M2) = 9.4 kg ; time (t) = 1.1 second

Clue given : 1, Blocks are released from rest ( intial velocity U = 0)

                  2. mass m1 is on horizontal surface ,m2 is on pulley

So, Block m1 slides horizontally and Block m2 falls vertically.

So the acceleation (a) of the two blocks after they are released is

a = g/[1+(m1/m2)] = 9.8 /[1+(6.6/9.4)] = 5.7575 m/s2

when block is released from rest (U = 0) block 1 moved during the 1.1 second interval is calculated using the kinematic equation

S = U t + (1/2) a t 2 = 0 x 1.1 + (1/2) x 5.7575 x 1.1 2 = 3.483 m

Answer is S= 3.483 m


Related Solutions

A block with a mass of m = 33 kg rests on a frictionless surface and...
A block with a mass of m = 33 kg rests on a frictionless surface and is subject to two forces acting on it. The first force is directed in the negative x-direction with a magnitude of F1 = 11.5 N. The second has a magnitude of F2 = 23 N and acts on the body at an angle θ = 22° measured from horizontal, as shown. write an expression for the component of net force, Fnet,x, in the x...
A block of mass m1 travels at a speed of v0 on a frictionless horizontal surface...
A block of mass m1 travels at a speed of v0 on a frictionless horizontal surface when it comes upon a second block of mass m2 which is initially motionless. Block m2 has a massless spring with spring constant k in front of it. a. Explain why the linear momentum of the system of two blocks and spring is or is not conserved during the collision. b. Explain why the mechanical energy of the system of two blocks and spring...
A block of mass m1 = 0.500 kg sits on a frictionless surface and is connected...
A block of mass m1 = 0.500 kg sits on a frictionless surface and is connected by a weightless string to a weight of mass m2 = 0.200 kg that hangs from a pulley. The system is initially at rest. If the mass m2 is released and drops for 1.00 m, what is the speed of the system? Assume that mass m1 does not reach the edge of the surface. Use energy considerations, not force considerations. What is the speed...
A textbook of mass 2.06 kg rests on a frictionless, horizontal surface. A cord attached to...
A textbook of mass 2.06 kg rests on a frictionless, horizontal surface. A cord attached to the book passes over a pulley whose diameter is 0.100 m , to a hanging book with mass 2.99 kg . The system is released from rest, and the books are observed to move a distance 1.24 m over a time interval of 0.750 s. a) What is the tension in the part of the cord attached to the textbook? b) What is the...
A block with mass M1 rests on a frictionless table. It is connected by a massless...
A block with mass M1 rests on a frictionless table. It is connected by a massless string to a block with mass M2, which hangs below the edge of the table. The system is released from rest at time t = 0. Find the distance block M1 moves in time t. You may assume that the string passes over a massless, frictionless pulley at the edge of the table to assist your calculations.
A block of mass m1=4.00 kg moves on the surface of a horizontal table. The coefficient...
A block of mass m1=4.00 kg moves on the surface of a horizontal table. The coefficient of kinetic friction between the table top and m1 is equal to 0.350. Block 2 of mass m2=2.00 kg is tied to m1 via a string that passes over a frictionless, massless pulley. The two blocks start from rest and m2drops by a distance L=1.75 m to the floor. Calculate the net work Wnet done by all the forces acting on the system
On a horizontal frictionless surface, a small block with mass 0.200 kg has a collision with...
On a horizontal frictionless surface, a small block with mass 0.200 kg has a collision with a block of mass 0.400 kg. Immediately after the collision, the 0.200 kg block is moving at 12.0 m/s in the direction 30
a)An object of mass ?m rests on a horizontal frictionless surface. A constant horizontal force of...
a)An object of mass ?m rests on a horizontal frictionless surface. A constant horizontal force of magnitude ?F is applied to the object. This force produces an acceleration: always only if ?F is larger than the weight of the object only while the object suddenly changes from rest to motion only if ?F is increasing choice A b)Now let there be friction between the surface and the object. If the object has a mass of 10 kg, and ??μs =...
A mass m1 = 5.6 kg rests on a frictionless table and connected by a massless...
A mass m1 = 5.6 kg rests on a frictionless table and connected by a massless string to another mass m2 = 5.7 kg. A force of magnitude F = 44 N pulls m1 to the left a distance d = 0.88 m. Initally both blocks are at rest. 1) How much work is done by the force F on the two block system? J 2) How much work is done by the normal force on m1 and m2? J...
A mass m1 = 4.4 kg rests on a frictionless table and connected by a massless...
A mass m1 = 4.4 kg rests on a frictionless table and connected by a massless string over a massless pulley to another mass m2 = 3.8 kg which hangs freely from the string. When released, the hanging mass falls a distance d = 0.7 m. 1)How much work is done by gravity on the two block system? 2)How much work is done by the normal force on m1? 3)What is the final speed of the two blocks? 4)How much...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT