Question

In: Advanced Math

6.3.8. Problem. Let f : A → B be a continuous bijection between subsets of R....

6.3.8. Problem. Let f : A → B be a continuous bijection between subsets of R.
(a) Show by example that f need not be a homeomorphism.
(b) Show that if A is compact, then f must be a homeomorphism.

6.3.9. Problem. Find in Q a set which is both relatively closed and bounded but which is not compact.

Solutions

Expert Solution


Related Solutions

Let f : R → R be a function. (a) Prove that f is continuous on...
Let f : R → R be a function. (a) Prove that f is continuous on R if and only if, for every open set U ⊆ R, the preimage f −1 (U) = {x ∈ R : f(x) ∈ U} is open. (b) Use part (a) to prove that if f is continuous on R, its zero set Z(f) = {x ∈ R : f(x) = 0} is closed.
Let A and B be two non empty bounded subsets of R: 1) Let A +B...
Let A and B be two non empty bounded subsets of R: 1) Let A +B = { x+y/ x ∈ A and y ∈ B} show that sup(A+B)= sup A + sup B 2) For c ≥ 0, let cA= { cx /x ∈ A} show that sup cA = c sup A hint:( show c supA is a U.B for cA and show if l < csupA then l is not U.B)
Let N be a submodule of the R-module M. Prove that there is a bijection between...
Let N be a submodule of the R-module M. Prove that there is a bijection between the submodules of M that contain N and the submodules of M/N.
a) Let S ⊂ R, assuming that f : S → R is a continuous function,...
a) Let S ⊂ R, assuming that f : S → R is a continuous function, if the image set {f(x); x ∈ S} is unbounded prove that S is unbounded. b) Let f : [0, 100] → R be a continuous function such that f(0) = f(2), f(98) = f(100) and the function g(x) := f(x+ 1)−f(x) is equal to zero in at most two points of the interval [0, 100]. Prove that (f(50) − f(49))(f(25) − f(24)) >...
Let f be a continuous function on [a, b] which is differentiable on (a,b). Then f...
Let f be a continuous function on [a, b] which is differentiable on (a,b). Then f is non-decreasing on [a,b] if and only if f′(x) ≥ 0 for all x ∈ (a,b), while if f is non-increasing on [a,b] if and only if f′(x) ≤ 0 for all x ∈ (a, b). can you please prove this theorem? thank you!
f : [a, b] → R is continuous and in the open interval (a,b) differentiable. f...
f : [a, b] → R is continuous and in the open interval (a,b) differentiable. f rises strictly monotonously ⇒ ∀x ∈ (a, b) : f ′(x) > 0. (TRUE or FALSE?) f rises strictly monotonously ⇐ ∀x ∈ (a, b) : f ′(x) > 0. (TRUE or FALSE?) f is constant ⇐⇒ ∀x∈(a,b): f′(x)=0 (TRUE or FALSE?) If f is reversable, f has no critical point. (TRUE or FALSE?) If a is a “minimizer” of f, then f ′(a)...
Let (X,dX),(Y,dY ) be metric spaces and f: X → Y be a continuous bijection. Prove...
Let (X,dX),(Y,dY ) be metric spaces and f: X → Y be a continuous bijection. Prove that if (X, dX ) is compact, then f is a homeomorphism. (Hint: it might be convenient to use that a function is continuous if and only if the inverse image of every open set is open, if and only if the inverse image of every closed set is closed).
Let f : [0, 1] → R and suppose that, for all finite subsets of [0,...
Let f : [0, 1] → R and suppose that, for all finite subsets of [0, 1], 0 ≤ x1 < x2 < · · · < xn ≤ 1, we have |f(x1) + f(x2) + · · · + f(xn)| ≤ 1. Let S := {x ∈ [0, 1] : f(x) ̸= 0}. Show that S is countable
a) Suppose f:[a, b] → R is continuous on [a, b] and differentiable on (a, b)...
a) Suppose f:[a, b] → R is continuous on [a, b] and differentiable on (a, b) and f ' < -1 on (a, b). Prove that f is strictly decreasing on [a, b]. b) Suppose f:[a, b] → R is continuous on [a, b] and differentiable on (a, b) and f ' ≠ -1 on (a, b).   Why must it be true that either f ' > -1 on all of (a, b) or f ' < -1 on all...
9. Let f be continuous on [a, b]. Prove that F(x) := sup f([x, b]) is...
9. Let f be continuous on [a, b]. Prove that F(x) := sup f([x, b]) is continuous on [a, b]
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT