In: Chemistry
A proposed mechanism for the reaction N2O5-->2NO2 +1/2O2
N2O5 k1--> NO2+NO3 <---k_1-- NO2 +NO3 --k2--> NO +O2 +NO2 NO +NO3 - k3-->2NO2
Applying the steady-state approximation to show that the overall reaction rate is -d[N2 O5 ]/dt=k[N2 O5 ] In this process you should evaluate K in terms of K1, K_1, K2 and K3
Hi, the answer to the question is here:
Rate of formation of N2O5 can be written as:
d[N2O5]/dt = k1[N2O5] – k(-1)[NO3][NO2]
Since NO3 is an intermediate, we have to remove it from the rate expression, so we can write it rate expression as:
d[NO3]/dt = k1[N2O5] – k(-1)[NO2][NO3] – k2[NO2][NO3] – k3[NO][NO3]
Let’s write another expression for NO2
d[NO2]/dt = k1[N2O5] – k(-1)[NO2][NO3] – k2[NO2][NO3]
since NO is also an intermediate, we have to write another expression for it
d[NO]/dt = k2[NO2][NO3] – k3[NO][NO3]
if we apply steady state approximation then, d[NO]/dt = 0
0 = k2[NO2][NO3] – k3[NO][NO3]
Rearranging the equation
k3[NO][NO3] = k2[NO2][NO3]
k3[NO] = k2[NO2]
[NO] = k2/k3[NO2] substituting the value of [NO] into the equation for NO3 and applying steady state approximation we get
d[NO3]/dt = k1[N2O5] – k(-1)[NO2][NO3] – k2[NO2][NO3] – k3[NO][NO3]
0= k1[N2O5] – k(-1)[NO2][NO3] – k2[NO2][NO3] – k2[N2][NO3]
0= k1[N2O5] – k(-1)[NO2][NO3] – 2(k2[NO2][NO3])
0= k1[N2O5] – [NO2][NO3](k(-1)+2k2) and
[NO2][NO3] = k1/(k(-1)+2k2) [N2O5]
Now, we have the value of [NO2][NO3]
Let’s put it into our first equation
d[N2O5]/dt = k1[N2O5] – k(-1)[NO3][NO2]
d[N2O5]/dt = k1[N2O5] – k(-1){ k1/(k(-1)+2k2) [N2O5]}
d[N2O5]/dt = [N2O5]x{k1 – k(-1){ k1/(k(-1)+2k2)}
I apologize for the clumsy writing, it was not possible for me to write such a large number of equations on the editor. I am writing final equations in the writer.
or we can write
now we have the final equation that
I hope it helps.