In: Finance
Case Study 3--Capital Budgeting |
|||||||||
(Comprehensive Spreadsheet Problem 11-23, page 408) |
|||||||||
Your division is considering two projects. Its WACC is 10%, and the projects' after-tax cash flows (in millions |
|||||||||
of dollars) would be as follows: |
|||||||||
Expected Cash Flows |
|||||||||
Time |
Project A |
Project B |
|||||||
0 |
($30) |
($30) |
|||||||
1 |
$5 |
$20 |
|||||||
2 |
$10 |
$10 |
|||||||
3 |
$15 |
$8 |
|||||||
4 |
$20 |
$6 |
|||||||
a. Calculate the projects' NPVs, IRRs, MIRRs, regular paybacks, and discounted paybacks. |
|||||||||
WACC = |
10% |
Use Excel's NPV function as explained in |
|||||||
NPVA = |
11model.xlsx. Note that the range does not include |
||||||||
NPVB = |
the initial costs, which are added separately. |
||||||||
We find the internal rate of return with Excel's IRR function: |
|||||||||
IRRA = |
|||||||||
IRRB = |
|||||||||
We find the modified internal rate of return with Excel's MIRR function using the 10% WACC: |
|||||||||
MIRRA = |
|||||||||
MIRRB = |
|||||||||
Project A Payback Period: |
|||||||||
Time period: |
0 |
1 |
2 |
3 |
|||||
Cash flow: |
|||||||||
Cumulative cash flow: |
|||||||||
PaybackA: |
|||||||||
Project B Payback Period: |
|||||||||
Time period: |
0 |
1 |
2 |
3 |
|||||
Cash flow: |
|||||||||
Cumulative cash flow: |
|||||||||
PaybackB: |
|||||||||
Project A Discounted Payback Period: |
|||||||||
Time period: |
0 |
1 |
2 |
3 |
|||||
Cash flow: |
|||||||||
Disc. cash flow: |
|||||||||
Disc. cum. cash flow: |
|||||||||
Discounted PaybackA: |
|||||||||
Project B Discounted Payback Period: |
|||||||||
Time period: |
0 |
1 |
2 |
3 |
|||||
Cash flow: |
|||||||||
Disc. cash flow: |
|||||||||
Disc. cum. cash flow: |
|||||||||
Discounted PaybackB: |
|||||||||
b. If the two projects are independent, which project(s) should be chosen? |
|||||||||
c. If the two projects are mutually exclusive and the WACC is 10%, which project(s) should be chosen? |
|||||||||
d. Plot NPV profiles for the two projects. Identify the projects' IRRs on the graph. |
|||||||||
Hint: Before you can graph the NPV profiles for these projects, you must create a data table of project NPV relative to |
|||||||||
differing costs of capital--use Excel's NPV formula and the space below to do so. The graph will automatically create, |
|||||||||
as values are added. |
|||||||||
Project A |
Project B |
||||||||
$0.00 |
$0.00 |
||||||||
0.00% |
|||||||||
2.00% |
|||||||||
4.00% |
|||||||||
6.00% |
|||||||||
8.00% |
|||||||||
10.00% |
|||||||||
12.00% |
|||||||||
14.00% |
|||||||||
16.00% |
|||||||||
18.00% |
|||||||||
19.19% |
|||||||||
20.00% |
|||||||||
22.00% |
|||||||||
22.52% |
|||||||||
24.00% |
|||||||||
e. If the WACC was 5%, would this change your recommendation if the projects were mutually exclusive? |
|||||||||
If the WACC was 15%, would this change your recommendation? Explain your answers. |
|||||||||
f. The "crossover rate" is 13.5252%. Explain what this rate is and how it affects the choice between |
|||||||||
mutually exclusive projects. |
|||||||||
g. Is it possible for conflicts to exist between the NPV and the IRR when independent projects are being evaluated? |
|||||||||
Explain your answer. |
|||||||||
h. Now, look at the regular and discounted paybacks. Which project looks better when judged by the paybacks? |
|||||||||
i. If the payback was the only method a firm used to accept or reject projects, what payback should it choose |
|||||||||
as the cutoff point, that is, reject projects if their paybacks are not below the chosen cutoff? Is your selected |
|||||||||
cutoff based on some economic criteria, or is it more or less arbitrary? Are the cutoff criteria equally |
|||||||||
arbitrary when firms use the NPV and/or the IRR as the criteria? Explain. |
|||||||||
j. Define the MIRR. What's the difference between the IRR and the MIRR, and which generally gives a better |
|||||||||
idea of the rate of return on the investment in a project? Explain. |
|||||||||
k. Why do most academics and financial executives regard the NPV as being the single best criterion and |
|||||||||
better than the IRR? Why do companies still calculate IRRs? |
a)
Formula sheet
A | B | C | D | E | F | G | H | I | J |
2 | |||||||||
3 | |||||||||
4 | Cash Flows | ||||||||
5 | Time | Project A | Project B | ||||||
6 | 0 | -30 | -30 | ||||||
7 | 1 | 5 | 20 | ||||||
8 | 2 | 10 | 10 | ||||||
9 | 3 | 15 | 8 | ||||||
10 | 4 | 20 | 6 | ||||||
11 | |||||||||
12 | a) | ||||||||
13 | |||||||||
14 | WACC | 0.1 | |||||||
15 | |||||||||
16 | NPVA | =NPV(D14,D7:D10)+D6 | |||||||
17 | NPVB | =NPV(D14,E7:E10)+E6 | |||||||
18 | |||||||||
19 | IRRA | =IRR(D6:D10) | |||||||
20 | IRRB | =IRR(E6:E10) | |||||||
21 | |||||||||
22 | MIRRA | =MIRR(D6:D10,D14,D14) | |||||||
23 | MIRRB | =MIRR(E6:E10,D14,D14) | |||||||
24 | |||||||||
25 | |||||||||
26 | Project A Payback Period: | ||||||||
27 | Time period: | 0 | 1 | 2 | 3 | 4 | |||
28 | Cash flow: | =D6 | =D7 | =D8 | =D9 | =D10 | |||
29 | Cumulative cash flow: | =E28 | =E29+F28 | =F29+G28 | =G29+H28 | =H29+I28 | |||
30 | |||||||||
31 | PaybackA: | 3 | years | ||||||
32 | |||||||||
33 | Project B Payback Period: | ||||||||
34 | Time period: | 0 | 1 | 2 | 3 | 4 | |||
35 | Cash flow: | =E6 | =E7 | =E8 | =E9 | =E10 | |||
36 | Cumulative cash flow: | =E35 | =E36+F35 | =F36+G35 | =G36+H35 | =H36+I35 | |||
37 | |||||||||
38 | PaybackB: | 2 | Years | ||||||
39 | |||||||||
40 | Project A Discounted Payback Period: | ||||||||
41 | Time period: | 0 | 1 | 2 | 3 | 4 | |||
42 | Cash flow: | =E28 | =F28 | =G28 | =H28 | =I28 | |||
43 | Disc. cash flow: | =E42/((1+$D$14)^E41) | =F42/((1+$D$14)^F41) | =G42/((1+$D$14)^G41) | =H42/((1+$D$14)^H41) | =I42/((1+$D$14)^I41) | |||
44 | Disc. cum. cash flow: | =E43 | =E44+F43 | =F44+G43 | =G44+H43 | =H44+I43 | |||
45 | |||||||||
46 | Discounted PaybackA: | =3+(0-H44)/(I44-H44) | Years | ||||||
47 | |||||||||
48 | Project B Discounted Payback Period: | ||||||||
49 | Time period: | 0 | 1 | 2 | 3 | 4 | |||
50 | Cash flow: | =E35 | =F35 | =G35 | =H35 | =I35 | |||
51 | Disc. cash flow: | =E50/((1+$D$14)^E49) | =F50/((1+$D$14)^F49) | =G50/((1+$D$14)^G49) | =H50/((1+$D$14)^H49) | =I50/((1+$D$14)^I49) | |||
52 | Disc. cum. cash flow: | =E51 | =E52+F51 | =F52+G51 | =G52+H51 | =H52+I51 | |||
53 | |||||||||
54 | Discounted PaybackB: | =2+(0-G52)/(H52-G52) | Years | ||||||
55 |