Question

In: Advanced Math

Assume that ψ : [a, b] → R is continuously differentiable. A critical point of ψ...

Assume that ψ : [a, b] → R is continuously differentiable. A critical point of
ψ is an x such that ψ'(x) = 0. A critical value is a number y such that for at
least one critical point x we have y = ψ(x).
(a) Prove that the set of critical values is a zero set. (This is the Morse-Sard
Theorem in dimension one.)
(b) Generalize this to continuously differentiable functions R → R.

Solutions

Expert Solution


Related Solutions

a) Suppose f:[a, b] → R is continuous on [a, b] and differentiable on (a, b)...
a) Suppose f:[a, b] → R is continuous on [a, b] and differentiable on (a, b) and f ' < -1 on (a, b). Prove that f is strictly decreasing on [a, b]. b) Suppose f:[a, b] → R is continuous on [a, b] and differentiable on (a, b) and f ' ≠ -1 on (a, b).   Why must it be true that either f ' > -1 on all of (a, b) or f ' < -1 on all...
Let f:(a, b) → R be a function and n∈N. Assume that f is n-times differentiable...
Let f:(a, b) → R be a function and n∈N. Assume that f is n-times differentiable and f^(n)(x) = 0 for all x∈(a,b). Show that f is a polynomial of degree at most n−1.
f : [a, b] → R is continuous and in the open interval (a,b) differentiable. f...
f : [a, b] → R is continuous and in the open interval (a,b) differentiable. f rises strictly monotonously ⇒ ∀x ∈ (a, b) : f ′(x) > 0. (TRUE or FALSE?) f rises strictly monotonously ⇐ ∀x ∈ (a, b) : f ′(x) > 0. (TRUE or FALSE?) f is constant ⇐⇒ ∀x∈(a,b): f′(x)=0 (TRUE or FALSE?) If f is reversable, f has no critical point. (TRUE or FALSE?) If a is a “minimizer” of f, then f ′(a)...
Let f : Rn → R be a differentiable function. Suppose that a point x∗ is...
Let f : Rn → R be a differentiable function. Suppose that a point x∗ is a local minimum of f along every line passes through x∗; that is, the function g(α) = f(x^∗ + αd) is minimized at α = 0 for all d ∈ R^n. (i) Show that ∇f(x∗) = 0. (ii) Show by example that x^∗ neen not be a local minimum of f. Hint: Consider the function of two variables f(y, z) = (z − py^2)(z...
Assume that f is differentiable at a.
Assume that f is differentiable at a.Compute limn→∞n∑i=1k[f(a+in)−f(a)]Deduce the limit limn→∞n∑i=1k[(n+i)mnm−1−1]
a) Suppose f:R → R is differentiable on R. Prove that if f ' is bounded...
a) Suppose f:R → R is differentiable on R. Prove that if f ' is bounded on R then f is uniformly continuous on R. b) Show that g(x) = (sin(x4))/(1 + x2) is uniformly continuous on R. c) Show that the derivative g'(x) is not bounded on R.
Determine where each of the following function from R to R is differentiable and find the...
Determine where each of the following function from R to R is differentiable and find the derivative function: a) f(x) =| x | b) g(x) = x | x | c) h(x) = sin x|sin x|.
The wave function for hydrogen in the 1s state may be expressed as ψ(r) = Ae−r/a0....
The wave function for hydrogen in the 1s state may be expressed as ψ(r) = Ae−r/a0. Determine the normalization constant A for this wave function. (Use the following as necessary: a0.)
At what point is the function f(x)= |3-x| not differentiable.
At what point is the function f(x)= |3-x| not differentiable.
(Black-Scholes) Assume S = $22.00, σ = 0.30, r = 0.05 p.a. continuously compounded, the stock...
(Black-Scholes) Assume S = $22.00, σ = 0.30, r = 0.05 p.a. continuously compounded, the stock pays a 1.0% p.a. continuous dividend and the option expires in a month. (a) What is the price of a $20 strike call? (Leave 2 d.p. for the answer) (b) What is the delta? (Leave 3 sig. fig. for the answer) (c) If the stock price changes to $22.10 immediately, what is the approximate change of the call price based on delta? (Leave 3...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT