Question

In: Advanced Math

Let f : Rn → R be a differentiable function. Suppose that a point x∗ is...

Let f : Rn → R be a differentiable function. Suppose that a point x∗ is a local minimum of f along every line passes through x∗; that is, the function

g(α) = f(x^∗ + αd)

is minimized at α = 0 for all d ∈ R^n.

(i) Show that ∇f(x∗) = 0.

(ii) Show by example that x^∗ neen not be a local minimum of f. Hint: Consider the function of two variables

f(y, z) = (z − py^2)(z − qy^2),

where 0 < p < q.

Solutions

Expert Solution


Related Solutions

At what point is the function f(x)= |3-x| not differentiable.
At what point is the function f(x)= |3-x| not differentiable.
Suppose that f is a differentiable function with derivative f" (x) = (x − 3)(x +...
Suppose that f is a differentiable function with derivative f" (x) = (x − 3)(x + 1)(x + 5). Determine the intervals of x for which the function of f is increasing and decreasing Explain why a positive value for f" (x) means the graph f(x) is increasing For f(x) = 2x2- − 3x2 − 12x + 21, find where f'(x) = 0, and the intervals on which the function increases and decreases Determine the values of a, b, and...
Let f:(a, b) → R be a function and n∈N. Assume that f is n-times differentiable...
Let f:(a, b) → R be a function and n∈N. Assume that f is n-times differentiable and f^(n)(x) = 0 for all x∈(a,b). Show that f is a polynomial of degree at most n−1.
6. (a) let f : R → R be a function defined by f(x) = x...
6. (a) let f : R → R be a function defined by f(x) = x + 4 if x ≤ 1 ax + b if 1 < x ≤ 3 3x x 8 if x > 3 Find the values of a and b that makes f(x) continuous on R. [10 marks] (b) Find the derivative of f(x) = tann 1 1 ∞x 1 + x . [15 marks] (c) Find f 0 (x) using logarithmic differentiation, where f(x)...
Suppose f is a twice differentiable function such that f′(x)>0 and f′′(x)<0 everywhere, and consider the...
Suppose f is a twice differentiable function such that f′(x)>0 and f′′(x)<0 everywhere, and consider the following data table. x      0       1       2 f(x)   3       A       B For each part below, determine whether the given values of A and B are possible (i.e., consistent with the information about f′and f′′ given above) or impossible, and explain your answer. a)A= 5, B= 6 (b)A= 5, B= 8 (c)A= 6, B= 6 (d)A= 6, B= 6.1 (e)A= 6, B= 9
1) Let f(x) be a continuous, everywhere differentiable function and g(x) be its derivative. If f(c)...
1) Let f(x) be a continuous, everywhere differentiable function and g(x) be its derivative. If f(c) = n and g(c) = d, write the equation of the tangent line at x = c using only the variables y, x, c, n, and d. You may use point-slope or slope-intercept but do not introduce more variables. 2) Let f(x) be a continuous, everywhere differentiable function. What kind information does f'(x) provide regarding f(x)? 3) Let f(x) be a continuous, everywhere differentiable...
a) Suppose f:R → R is differentiable on R. Prove that if f ' is bounded...
a) Suppose f:R → R is differentiable on R. Prove that if f ' is bounded on R then f is uniformly continuous on R. b) Show that g(x) = (sin(x4))/(1 + x2) is uniformly continuous on R. c) Show that the derivative g'(x) is not bounded on R.
Let f be a continuous function on [a, b] which is differentiable on (a,b). Then f...
Let f be a continuous function on [a, b] which is differentiable on (a,b). Then f is non-decreasing on [a,b] if and only if f′(x) ≥ 0 for all x ∈ (a,b), while if f is non-increasing on [a,b] if and only if f′(x) ≤ 0 for all x ∈ (a, b). can you please prove this theorem? thank you!
(a) Let M be a Cr submanifold of Rn, and let f : M → R...
(a) Let M be a Cr submanifold of Rn, and let f : M → R be a Cr function. Show there is an open neighbourhood V of M in Rn and a Cr function g : V → R such that f = g|M. (b) Show that, if M is a closed subset of Rn, then we can take V = Rn . (c) Can we take V = Rn in general? Why or why not? We've just learned...
Let f be a differentiable function on the interval [0, 2π] with derivative f' . Show...
Let f be a differentiable function on the interval [0, 2π] with derivative f' . Show that there exists a point c ∈ (0, 2π) such that cos(c)f(c) + sin(c)f'(c) = 2 sin(c).
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT