In: Statistics and Probability
Question 1
a) For the data in Homework 2, Question 1, calculate the ANOVA table. Use the ANOVA Table to conduct an F-Test to see if the model is significant (use α = 0.05).
Data:
Size (Xi) |
12 |
15 |
18 |
21 |
24 |
27 |
Price (Yi) |
60 |
85 |
75 |
105 |
120 |
110 |
b) Give a 95% confidence interval for the mean sale price for 2000 sq. ft. houses.
c) Give a 95% prediction interval for the sale price of an individual 2000 sq. ft. house.
d) For the data in Homework 2, Question 2, calculate the ANOVA table for the data. Use the ANOVA Table to conduct an F-Test to see if the model is significant (use α = 0.05).
Data:
dollars |
satisfaction |
11 |
6 |
18 |
8 |
17 |
10 |
15 |
4 |
9 |
9 |
5 |
6 |
12 |
3 |
19 |
5 |
22 |
2 |
25 |
10 |
Question 2
A research firm collected data on a sample of n = 30 drivers to investigate the relationship between the age of a driver and the distance the driver can see. The data is given below:
Age |
Distance |
Age |
Distance |
|
18 |
510 |
55 |
420 |
|
20 |
590 |
63 |
350 |
|
22 |
560 |
65 |
420 |
|
23 |
510 |
66 |
300 |
|
23 |
460 |
67 |
410 |
|
25 |
490 |
68 |
300 |
|
27 |
560 |
70 |
390 |
|
28 |
510 |
71 |
320 |
|
29 |
460 |
72 |
370 |
|
32 |
410 |
73 |
280 |
|
37 |
420 |
74 |
420 |
|
41 |
460 |
75 |
460 |
|
46 |
450 |
77 |
360 |
|
49 |
380 |
79 |
310 |
|
53 |
460 |
82 |
360 |
Use SAS to fit a simple linear regression and answer the following questions:
a) Find the least squares estimate for the regression line Yi = b0 + b1Xi + ei.
b) Estimate the standard deviation of the error term ei
c) Test the null hypothesis that b1 = 0, using α = 0.05. Is the model useful?
d) Calculate R2? Explain what this means, and comment on whether or not it suggests the model is good.
e) Calculate the correlation coefficient? Explain what this means, and comment on whether or not it suggests the model is good.
f) What would you expect the distance that a 50 year old driver can see to be?
g) Give a 95% prediction interval for the distance that an individual 50 year old can see.
h) Give a 95% confidence interval for the mean distance that 50 year olds can see.
a) Enter the data in excel -> Data -> data analysis -> Regression -> Ok -> in Input Y range select the cells containing the y values -> In Input X range select the cells containing the x values -> In output range select any empty cell -> Ok -> The output appears as:
SUMMARY OUTPUT | ||||||||
Regression Statistics | ||||||||
Multiple R | 0.896015 | |||||||
R Square | 0.802844 | |||||||
Adjusted R Square | 0.753555 | |||||||
Standard Error | 11.40175 | |||||||
Observations | 6 | |||||||
ANOVA | ||||||||
df | SS | MS | F | Significance F | ||||
Regression | 1 | 2117.5 | 2117.5 | 16.28846 | 0.015657 | |||
Residual | 4 | 520 | 130 | |||||
Total | 5 | 2637.5 | ||||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | |
Intercept | 21 | 18.31731 | 1.146457 | 0.315525 | -29.857 | 71.857 | -29.857 | 71.857 |
X Variable 1 | 3.666667 | 0.908514 | 4.035897 | 0.015657 | 1.144229 | 6.189105 | 1.144229 | 6.189105 |
The Anova table in the output.
b)
d) Enter the data in excel -> Data -> data analysis -> Regression -> Ok -> in Input Y range select the cells containing the satisfaction -> In Input X range select the cells containing dollars -> In output range select any empty cell -> Ok -> The output appears as:
SUMMARY OUTPUT | ||||||||
Regression Statistics | ||||||||
Multiple R | 0.076446 | |||||||
R Square | 0.005844 | |||||||
Adjusted R Square | -0.11843 | |||||||
Standard Error | 6.481938 | |||||||
Observations | 10 | |||||||
ANOVA | ||||||||
df | SS | MS | F | Significance F | ||||
Regression | 1 | 1.975843 | 1.975843 | 0.047027 | 0.833749 | |||
Residual | 8 | 336.1242 | 42.01552 | |||||
Total | 9 | 338.1 | ||||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | |
Intercept | 14.27126 | 5.167806 | 2.761569 | 0.024615 | 2.354273 | 26.18824 | 2.354273 | 26.18824 |
X Variable 1 | 0.163293 | 0.753001 | 0.216856 | 0.833749 | -1.57313 | 1.899717 | -1.57313 | 1.899717 |
The Anova table appears in the output.