Question

In: Mechanical Engineering

At atmospheric pressure, moist air at T1 = 35°C and 40% relative humidity enters a heat...

At atmospheric pressure, moist air at T1 = 35°C and 40% relative humidity enters a heat exchanger operating at steady state and is cooled at constant pressure to 24°C with a m with dot on top of 11 kg/min. Ignoring kinetic and potential energy effects, determine: (a) Properties at state 1: (10 points) Mixture enthalpy, Humidity ratio (b) Properties at state 2: (15 points) Mixture enthalpy, relative humidity, humidity ratio (c) the dew point temperature at the inlet, in °C (5 points) (d) the rate water is condensed (5 points)

Solutions

Expert Solution

Kindly share missing data at state 2.

I have solved a & c part. And kindly do not downvote as I know surely there is some missing value in question.


Related Solutions

Moist air enters an adiabatic humidifier system at 1 atm, 15 °C, with a relative humidity...
Moist air enters an adiabatic humidifier system at 1 atm, 15 °C, with a relative humidity of 20%. The volumetric flow rate of the incoming moist air is 150 m3/min. Saturated water vapor at 1 atm is injected into the flow such that the outlet temperature is 30 °C and the outlet relative humidity is 40%. The pressure is constant in the humidifier system. Determine the mass flow rate of the saturated water vapor entering the humidifier at state 3,...
Moist air at 30 °C and 50% relative humidity enters a dehumidifier operating at steady state...
Moist air at 30 °C and 50% relative humidity enters a dehumidifier operating at steady state with a mass flow rate of 319.35 kg/min. The moist air passes over a cooling coil and water vapor condenses. Condensate (condensed water) exits at 10 °C. Saturated moist air exits in a separate stream at the same temperature. The pressure remains constant at 1 bar. Determine (a) the rate at which water is condensed, in kg/min, and (b) the heat transfer rate during...
Air at T1 = 32°C, p1 = 1 bar, 50% relative humidity enters an insulated chamber...
Air at T1 = 32°C, p1 = 1 bar, 50% relative humidity enters an insulated chamber operating at steady state with a mass flow rate of 3 kg/min and mixes with a saturated moist air stream entering at T2 = 7°C, p2 = 1 bar. A single mixed stream exits at T3 = 17°C, p3 = 1 bar. Neglect kinetic and potential energy effects A) Determine mass flow rate of the moist air entering at state 2, in kg/min. (Answer...
Moist air enters a conditioner operating at steady state at 40oC and 60% relative humidity constant...
Moist air enters a conditioner operating at steady state at 40oC and 60% relative humidity constant pressure process at 1 atm from to. The air is first passed over cooling coils and moisture is removed and then is passed over heating coils to achieve the final state of 18oC dry bulb and 10oC wet bulb. (a) Sketch the process on the psychometric chart and determine (b) the dew point temperature of the mixture at the inlet of the cooling coils...
Moist air initially at T1 = 140°C, p1 = 4 bar, and relitive humidity = 74%...
Moist air initially at T1 = 140°C, p1 = 4 bar, and relitive humidity = 74% is contained in a 2.0-m3 closed, rigid tank. The tank contents are cooled to T2 = 35°C. Determine the temperature at which condensation begins, in °C
Moist air enters an air-conditioning system as shown in the figure below at T1 = 28°C,...
Moist air enters an air-conditioning system as shown in the figure below at T1 = 28°C, ?1 = 85% and a volumetric flow rate of (AV)1 = 0.89 m3/s. At the exit of the dehumidifying section, the air is saturated, ?2 = 100%, and the condensate leaves this section at the same temperature as the moist air. At the exit of the heating section the moist air is at T3 = 24°C, ?3 = 50%. The system operates at steady...
Moist air at 55 oF dry bulb temperature and 40% relative humidity is first heated through...
Moist air at 55 oF dry bulb temperature and 40% relative humidity is first heated through a heating coil. The air is then adiabatically humidified by saturated water vapor at 4.5 psia. The exit air has a dry bulb temperature of 90 oF and wet bulb temperature 65 oF. Air is supplied at a volume flow rate of 478.5 cfm. Assume sea level pressure throughout. Determine the following. a) Show the inlet and outlet air condition clearly on the psychrometric...
Humid air at 155 kPa, 40°C, and 70 percent relative humidity is cooled at constant pressure...
Humid air at 155 kPa, 40°C, and 70 percent relative humidity is cooled at constant pressure in a pipe to its dew-point temperature. Calculate the heat transfer, in kJ/kg dry air, required for this process. Use data from the tables. The heat transfer is  kJ/kg dry air.
Air at 35°C and 33% relative humidity is used for drying a food product. The air...
Air at 35°C and 33% relative humidity is used for drying a food product. The air is first heated to 90°C and then cooled adiabatically to an exit dry bulb temperature of 40°C. (a) How much moisture did the air pick up? (b) Calculate the change in enthalpy from the initial unheated air to the final moist air. (c) If the food is dried from 85% moisture to 20% moisture (both on a wet basis) at an inlet flow rate...
Outside air at 10 degC, 1 bar and 40% relative humidity enters an air conditioner operating...
Outside air at 10 degC, 1 bar and 40% relative humidity enters an air conditioner operating at steady state with a mass flow rate of 1.5kg/s. The air is first heated at essentially constant pressure to 30 degC. Liquid water at 15 degC is then injected, bringing the air to 25 degC, 1bar. Determine (a) the rate of heat transfer to the air passing through the heating section, in kJ/s. (b) the rate of water is injected, in kg/s. (c)...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT