Question

In: Mechanical Engineering

Moist air initially at T1 = 140°C, p1 = 4 bar, and relitive humidity = 74%...

Moist air initially at T1 = 140°C, p1 = 4 bar, and relitive humidity = 74% is contained in a 2.0-m3 closed, rigid tank. The tank contents are cooled to T2 = 35°C.

Determine the temperature at which condensation begins, in °C

Solutions

Expert Solution


Related Solutions

Moist air enters an air-conditioning system as shown in the figure below at T1 = 28°C,...
Moist air enters an air-conditioning system as shown in the figure below at T1 = 28°C, ?1 = 85% and a volumetric flow rate of (AV)1 = 0.89 m3/s. At the exit of the dehumidifying section, the air is saturated, ?2 = 100%, and the condensate leaves this section at the same temperature as the moist air. At the exit of the heating section the moist air is at T3 = 24°C, ?3 = 50%. The system operates at steady...
Moist air enters an adiabatic humidifier system at 1 atm, 15 °C, with a relative humidity...
Moist air enters an adiabatic humidifier system at 1 atm, 15 °C, with a relative humidity of 20%. The volumetric flow rate of the incoming moist air is 150 m3/min. Saturated water vapor at 1 atm is injected into the flow such that the outlet temperature is 30 °C and the outlet relative humidity is 40%. The pressure is constant in the humidifier system. Determine the mass flow rate of the saturated water vapor entering the humidifier at state 3,...
Moist air at 30 °C and 50% relative humidity enters a dehumidifier operating at steady state...
Moist air at 30 °C and 50% relative humidity enters a dehumidifier operating at steady state with a mass flow rate of 319.35 kg/min. The moist air passes over a cooling coil and water vapor condenses. Condensate (condensed water) exits at 10 °C. Saturated moist air exits in a separate stream at the same temperature. The pressure remains constant at 1 bar. Determine (a) the rate at which water is condensed, in kg/min, and (b) the heat transfer rate during...
Air undergoes a polytropic process in a piston–cylinder assembly from p1 = 1 bar, T1 =...
Air undergoes a polytropic process in a piston–cylinder assembly from p1 = 1 bar, T1 = 295 K to p2 = 7 bar. The air is modeled as an ideal gas and kinetic and potential energy effects are negligible. For a polytropic exponent of 1.4, determine the work and heat transfer, each in kJ per kg of air, (1) assuming constant cv evaluated at 300 K. (2) assuming variable specific heats.
Air undergoes a polytropic process in a piston–cylinder assembly from p1 = 1 bar, T1 =...
Air undergoes a polytropic process in a piston–cylinder assembly from p1 = 1 bar, T1 = 295 K to p2 = 3 bar. The air is modeled as an ideal gas and kinetic and potential energy effects are negligible. For a polytropic exponent of 1.2, determine the work and heat transfer, each in kJ per kg of air, (1) assuming constant cv evaluated at 300 K. (2) assuming variable specific heats.
Air undergoes a polytropic process in a piston–cylinder assembly from p1 = 1 bar, T1 =...
Air undergoes a polytropic process in a piston–cylinder assembly from p1 = 1 bar, T1 = 295 K to p2 = 3 bar. The air is modeled as an ideal gas and kinetic and potential energy effects are negligible. For a polytropic exponent of 1.6, determine the work and heat transfer, each in kJ per kg of air, (1) assuming constant cv evaluated at 300 K. (2) assuming variable specific heats.
There are 10 m3/s of moist air at 22C and relative humidity of 50% that enter...
There are 10 m3/s of moist air at 22C and relative humidity of 50% that enter a heating element until its temperature becomes 35C. Determine the amount of heat required and the final %Rh of the air.
1. Air enters a steady-state diffuser at T1 = 20 °C, P1 = 100 kPa and...
1. Air enters a steady-state diffuser at T1 = 20 °C, P1 = 100 kPa and leaves at P2 = 105 kPa. You may assume an adiabatic diffuser and constant specific heats. Find T2 if: a) V1 = 10 m/s, V2 = 0 m/s b) V1 = 100 m/s, V2 = 90 m/s c) V1 = 500 m/s, V2 = 490 m/s d) V1 = 1000 m/s, V2 = 990 m/s
0.2 kg/s of moist air at 45oC (DBT) and Humidity ratio 0.006 kgw/kgda (dry air) is...
0.2 kg/s of moist air at 45oC (DBT) and Humidity ratio 0.006 kgw/kgda (dry air) is mixed with 0.3 kg/s of moist air at 250C (DBT) and a humidity ratio of 0.018 kgw/kg da in an adiabatic mixing chamber. After mixing, the mixed air is heated to a final temperature of 40o C using a heater. Assume the barometric pressure to be 1 atm. Find Enthalpies of both fluids Temperature and humidity ratio of air after mixing. Heat transfer rate...
Air at 28 °C, 1 bar, 50% relative humidity enters an insulated chamber operating at steady...
Air at 28 °C, 1 bar, 50% relative humidity enters an insulated chamber operating at steady state with a mass flow rate of 5 kg/min and mixes with a saturated moist air stream entering at 4 °C, 1 bar with a mass flow rate of 8 kg/min. A single mixed stream exits at 1 bar. Determine (a) the relative humidity and temperature, in °C, of the exiting stream.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT