Use a random number generator to produce 1000 normally distributed numbers with a mean of 20 and a variance of 4. Obtain the mean, variance, and histogram of these numbers, and discuss whether they appear normally distributed with the desired mean and variance.
In: Mechanical Engineering
The following data give the stopping distance d as a function of initial speed υ, for a certain car model. Find a quadratic polynomial that fits the data. Determine the quality of the curve t by computing J, S, and r2.
In: Mechanical Engineering
Suppose that z = xy, where x and y are independent and normally distributed random variables. The mean and variance of x are µx = 10 and σ2x = 2. The mean and variance of y are µy = 15 and σ2y = 3. Find the mean and variance of z by simulation. Does µz = µxµy? Does σ2z = σ2x σ2y? Do this for 100, 1000, and 5000 trials.
In: Mechanical Engineering
Suppose that y = x2, where x is a normally distributed random variable with a mean and variance of µx = 0 and σ2x = 4. Find the mean and variance of y by simulation. Does µy = µ2x? Does σy = σ2x? Do this for 100, 1000, and 5000 trials.
In: Mechanical Engineering
Measurements of a number of fittings show that the pitch diameter of the thread is normally distributed with a mean of 8.007 mm and a standard deviation of 0.005 mm. The design specifications require that the pitch diameter be 8 ± 0.01 mm. Estimate the percentage of fittings that will be within tolerance.
In: Mechanical Engineering
Data analysis of the breaking strength of a certain fabric shows that it is normally distributed with a mean of 300 lb and a variance of 9.
a. Estimate the percentage of fabric samples that will have a breaking strength no less than 294 lb.
b. Estimate the percentage of fabric samples that will have a breaking strength no less than 297 lb and no greater than 303 lb.
In: Mechanical Engineering
Use the switch structure to write a MATLAB program to compute the amount of money that accumulates in a savings account in one year. The program should accept the following input: the initial amount of money deposited in the account; the frequency of interest compounding (monthly, quarterly, semiannually, or annually); and the interest rate. Run your program for a $1000 initial deposit for each case; use a 5 percent interest rate. Compare the amounts of money that accumulate for each case.
In: Mechanical Engineering
A liquid (ρ = 1000 kg/m3; μ = 2 × 10–2 N ∙ s/m2; v = 2 × 10–5 m2/s) flows tangentially past a flat plate with total length of 4 m (parallel to the flow direction), a velocity of 1 m/s, and a width of 1.5 m. What is the skin friction drag (shear force) on one side of the plate?
In: Mechanical Engineering
what is a critical path in project planning? give a brief explanation on how to draw the critical path diagram
In: Mechanical Engineering
Consider steam in an ideal Rankine cycle. The saturated vapor enters the turbine at 8.0 MPa. Saturated liquid exits the condenser at P = 0.008 MPa. The net power output of the cycle is 100 MW.
determine the thermal efficiency of the cycle
In: Mechanical Engineering
A gas-turbine power plant operates on the simple Brayton cycle between the pressure limits of 100 and 1200 kPa. The working fluid is air, which enters the compressor at 300K at a rate of 150 m3/min and leaves the turbine at 773K. Using variable specific heats for air and assuming a compressor isentropic efficiency of 82 percent and a turbine isentropic efficiency of 88 percent, determine:
(a) the net power output
(b) the back work ratio
(c) the thermal efficiency
In: Mechanical Engineering
Consider an ideal Ericsson cycle with air as the working fluid executed in a steady-flow system. Air is at a temperature of 270 degrees and a pressure of 120 kPa at the beginning of the isothermal compression process, during which 150 kJ/kg of heat is rejected. Heat transfer to air occurs at a temperature of 1200K. Determine
(a) the maximum pressure in the cycle
(b) the network output per unit mass of air
(c) the thermal efficiency of the cycle
In: Mechanical Engineering
Determine the maximum deflection on the Cantilever beam with a concentrated load p at the free end as shown
In: Mechanical Engineering
Printed on the side of a tire on an all-wheel-drive sport utility wagon is the warning “Do not inflate above 44 psi,” where psi is the abbreviation for the pressure unit pounds per square inch (lb/in2). Express the tire’s maximum pressure rating in
(a) The USCS unit of lb/ft2 (psf) and
(b) the SI unit of kPa.
In: Mechanical Engineering
(a) How do you calculate hydrostatic force in gates?
(b) Calculate total hydrostatic force on the vertical gate. Also calculate the location of the hydrostatic force from top
In: Mechanical Engineering