In: Finance
need it asap An investor is considering a bond priced at $953 with a face value of $1,000. The coupon rate is 9.25% paid semiannually. There are 15 years remaining between settlement and maturity on the bond. Using the Excel YIELD function and the related example in Exhibit 10.2 in Chapter 10, calculate the yield to maturity. Note: Excel requires that bond prices and face values be expressed on 100 point scale so you must divide current price and redemption value by 10.
Bond Price | 953 | |||
Face Value | 1000 | |||
Coupon Rate | 9.25% | 0.04625 | semi annually | |
No of Years | 15 | 46.25 | ||
Yield to Maturity | ? | |||
Years | Cashflows | Discounted factor @ 15% | ||
1 | 46.25 | 0.953025 | 44.07742 | |
2 | 46.25 | 0.908257 | 42.0069 | |
3 | 46.25 | 0.865592 | 40.03365 | |
4 | 46.25 | 0.824931 | 38.15308 | |
5 | 46.25 | 0.786181 | 36.36085 | |
6 | 46.25 | 0.74925 | 34.65282 | |
7 | 46.25 | 0.714054 | 33.02501 | |
8 | 46.25 | 0.680512 | 31.47368 | |
9 | 46.25 | 0.648545 | 29.99521 | |
10 | 46.25 | 0.61808 | 28.5862 | |
11 | 46.25 | 0.589046 | 27.24337 | |
12 | 46.25 | 0.561376 | 25.96363 | |
13 | 46.25 | 0.535005 | 24.74399 | |
14 | 46.25 | 0.509874 | 23.58165 | |
15 | 46.25 | 0.485922 | 22.47391 | |
16 | 46.25 | 0.463096 | 21.41821 | |
17 | 46.25 | 0.441343 | 20.4121 | |
18 | 46.25 | 0.420611 | 19.45325 | |
19 | 46.25 | 0.400853 | 18.53944 | |
20 | 46.25 | 0.382023 | 17.66856 | |
21 | 46.25 | 0.364077 | 16.83858 | |
22 | 46.25 | 0.346975 | 16.0476 | |
23 | 46.25 | 0.330676 | 15.29377 | |
24 | 46.25 | 0.315143 | 14.57535 | |
25 | 46.25 | 0.300339 | 13.89068 | |
26 | 46.25 | 0.286231 | 13.23817 | |
27 | 46.25 | 0.272785 | 12.61631 | |
28 | 46.25 | 0.259971 | 12.02366 | |
29 | 46.25 | 0.247759 | 11.45886 | |
30 | 1046.25 | 0.236121 | 247.0412 | |
952.8871 | ||||
9.858 | ||||
The yield to maturity is approx 9.858% |