In: Statistics and Probability
The efficiency for a steel specimen immersed in a phosphating tank is the weight of the phosphate coating divided by the metal loss (both in mg/ft2). An article gave the accompanying data on tank temperature (x) and efficiency ratio (y).
Temp. | 174 | 176 | 177 | 178 | 178 | 179 | 180 | 181 |
---|---|---|---|---|---|---|---|---|
Ratio | 0.84 | 1.33 | 1.52 | 1.11 | 1.05 | 1.14 | 1.10 | 1.74 |
Temp. | 184 | 184 | 184 | 184 | 184 | 185 | 185 | 186 |
---|---|---|---|---|---|---|---|---|
Ratio | 1.41 | 1.50 | 1.61 | 2.21 | 2.13 | 0.80 | 1.39 | 0.98 |
Temp. | 186 | 186 | 186 | 188 | 188 | 189 | 190 | 192 |
---|---|---|---|---|---|---|---|---|
Ratio | 1.77 | 1.96 | 2.74 | 1.43 | 2.50 | 2.98 | 1.87 |
3.10 |
(a) Determine the equation of the estimated regression line.
(Round all numerical values to five decimal places.)
y =
(b) Calculate a point estimate for true average efficiency ratio
when tank temperature is 186. (Round your answer to four decimal
places.)
(c) Calculate the values of the residuals from the least squares
line for the four observations for which temperature is 186. (Round
your answers to four decimal places.)
(186, 0.98) | ||
(186, 1.77) | ||
(186, 1.96) | ||
(186, 2.74) |
(d) What proportion of the observed variation in efficiency ratio can be attributed to the simple linear regression relationship between the two variables? (Round your answer to four decimal places.)
Independent variable x: Temp
Dependent variable: y: Ratio
(a)
Following table shows the calculations:
X | Y | X^2 | Y^2 | XY | |
174 | 0.84 | 30276 | 0.7056 | 146.16 | |
176 | 1.33 | 30976 | 1.7689 | 234.08 | |
177 | 1.52 | 31329 | 2.3104 | 269.04 | |
178 | 1.11 | 31684 | 1.2321 | 197.58 | |
178 | 1.05 | 31684 | 1.1025 | 186.9 | |
179 | 1.14 | 32041 | 1.2996 | 204.06 | |
180 | 1.1 | 32400 | 1.21 | 198 | |
181 | 1.74 | 32761 | 3.0276 | 314.94 | |
184 | 1.41 | 33856 | 1.9881 | 259.44 | |
184 | 1.5 | 33856 | 2.25 | 276 | |
184 | 1.61 | 33856 | 2.5921 | 296.24 | |
184 | 2.21 | 33856 | 4.8841 | 406.64 | |
184 | 2.13 | 33856 | 4.5369 | 391.92 | |
185 | 0.8 | 34225 | 0.64 | 148 | |
185 | 1.39 | 34225 | 1.9321 | 257.15 | |
186 | 0.98 | 34596 | 0.9604 | 182.28 | |
186 | 1.77 | 34596 | 3.1329 | 329.22 | |
186 | 1.96 | 34596 | 3.8416 | 364.56 | |
186 | 2.74 | 34596 | 7.5076 | 509.64 | |
188 | 1.43 | 35344 | 2.0449 | 268.84 | |
188 | 2.5 | 35344 | 6.25 | 470 | |
189 | 2.98 | 35721 | 8.8804 | 563.22 | |
190 | 1.87 | 36100 | 3.4969 | 355.3 | |
192 | 3.1 | 36864 | 9.61 | 595.2 | |
Total | 4404 | 40.21 | 808638 | 77.2047 | 7424.41 |
(b)
(C)
Residual = observed -predicted
For (186, 0.98):
Residual = 0.98 - 1.90297 = -0.92297
For (186, 1.77):
Residual = 1.77 - 1.90297 = -0.13297
For (186, 1.96):
Residual = 1.96 - 1.90297 = 0.05703
For (186, 2.74):
Residual = 2.74 - 1.90297 = 0.83703
(D)
Answer: The 0.4251 proportion of the observed variation in efficiency ratio can be attributed to the simple linear regression relationship between the two variables.