In: Statistics and Probability
Solution:
| x | x2 |
| 35 | 1225 |
| 90 | 8100 |
| 105 | 11025 |
| 45 | 2025 |
| 120 | 14400 |
| 65 | 4225 |
| 30 | 900 |
| 23 | 529 |
| 100 | 10000 |
| 110 | 12100 |
| 105 | 11025 |
| 95 | 9025 |
| 105 | 11025 |
| 60 | 3600 |
| 110 | 12100 |
| 120 | 14400 |
| 95 | 9025 |
| 90 | 8100 |
| 60 | 3600 |
| 70 | 4900 |
x=1633 |
x2=151329 |
The sample mean is
Mean
= (
x
/ n) )
=35+90+105+45+120+65+30+23+100+110+105+95+105+60+110+120+95+90+60+7020
=163320
=81.65
Mean
= 81.65
The sample standard is S
S =
(
x2 ) - ((
x)2 / n ) n -
=√(151329-(1633)220) 19
=√(151329-133334.45) 19
=√17994.55 /19
=√947.0816
=30.7747
sample Standard deviation S= 30.77
n = 20
Degrees of freedom = df = n - 1 = 20 - 1 = 19
At 90% confidence level the z is ,
= 1 - 90% = 1 - 0.90 = 0.10
/ 2 = 0.10 / 2 = 0.05
t
/2,df = t0.05,19 =1.729
Margin of error = E = t
/2,df
* (s /n)
= 1.729* (30.77 /
20)
= 11.90
Margin of error = 11.90
The 90% confidence interval estimate of the population mean is,
- E <
<
+ E
81.65 - 11.90 <
< 81.65 + 11.90
69.75 <
< 93.55
lower limit= 69.75
upper limit= 93.55