In: Statistics and Probability
How much does a sleeping bag cost? Let's say you want a sleeping bag that should keep you warm in temperatures from 20°F to 45°F. A random sample of prices ($) for sleeping bags in this temperature range is given below. Assume that the population of x values has an approximately normal distribution.
90 | 65 | 95 | 70 | 55 | 65 | 30 | 23 | 100 | 110 |
105 | 95 | 105 | 60 | 110 | 120 | 95 | 90 | 60 |
70 |
(a) Use a calculator with mean and sample standard deviation keys to find the sample mean price x and sample standard deviation s. (Round your answers to two decimal places.)
x = | $ |
s = | $ |
(b) Using the given data as representative of the population of prices of all summer sleeping bags, find a 90% confidence interval for the mean price μ of all summer sleeping bags. (Round your answers to two decimal places.)
lower limit | $ |
upper limit | $ |
a) For the given data set the mean is calculated as:
Mean = (90 + 65 + 95 + 70 + 55 + 65 + 30 + 23 + 100 + 110 + 105
+ 95 + 105 + 60 + 110 + 120 + 95 + 90 + 60 + 70)/20
= 1613/20
Mean = 80.65
And the sample standard deviation as:
Standard Deviation s = √(1/20 - 1) x ((90 - 80.65)2 +
( 65 - 80.65)2 + ( 95 - 80.65)2 + ( 70 -
80.65)2 + ( 55 - 80.65)2 + ( 65 -
80.65)2 + ( 30 - 80.65)2 + ( 23 -
80.65)2 + ( 100 - 80.65)2 + ( 110 -
80.65)2 + ( 105 - 80.65)2 + ( 95 -
80.65)2 + ( 105 - 80.65)2 + ( 60 -
80.65)2 + ( 110 - 80.65)2 + ( 120 -
80.65)2 + ( 95 - 80.65)2 + ( 90 -
80.65)2 + ( 60 - 80.65)2 + ( 70 -
80.65)2)
= √(1/19) x ((9.35)2 + (-15.65)2 +
(14.35)2 + (-10.65)2 + (-25.65)2 +
(-15.65)2 + (-50.65)2 + (-57.65)2
+ (19.35)2 + (29.35)2 + (24.35)2 +
(14.35)2 + (24.35)2 + (-20.65)2 +
(29.35)2 + (39.35)2 + (14.35)2 +
(9.35)2 + (-20.65)2 +
(-10.65)2)
= √(0.0526) x ((87.4225) + (244.9225) + (205.9225) + (113.4225) +
(657.9225) + (244.9225) + (2565.4225) + (3323.5225) + (374.4225) +
(861.4225) + (592.9225) + (205.9225) + (592.9225) + (426.4225) +
(861.4225) + (1548.4225) + (205.9225) + (87.4225) + (426.4225) +
(113.4225))
= √(0.0526) x (13740.55)
= √(722.75293)
= 26.89
b) The confidence interval is calcualted as:
where tc is computed using the excel formula for t-distribution which takes significance level and degree of freedom n-1= 20-1, thus the formula used is =T.INV.2T(0.10, 19), thus the tc computed as 1.729
Now the confidence interval is computed as:
So, the Lower Limit is 70.25
Upper Limit is 91.05.