Question

In: Computer Science

Prove  {0n1n, n≥0} is a computable language

Prove  {0n1n, n≥0} is a computable language

Solutions

Expert Solution


Related Solutions

Prove the language of strings over {a, b} of the form (b^m)(a^n) , 0 ≤ m...
Prove the language of strings over {a, b} of the form (b^m)(a^n) , 0 ≤ m < n-2 isn’t regular. (I'm using the ^ notation but your free to make yours bman instead of (b^m)(a^n) ) Use the pumping lemma for regular languages.
Let {an}n∈N be a sequence with lim n→+∞ an = 0. Prove that there exists a...
Let {an}n∈N be a sequence with lim n→+∞ an = 0. Prove that there exists a subsequence {ank }k∈N so that X∞ k=1 |ank | ≤ 8
Prove that the language L={(M, N): M is a Turing machine and N is a DFA...
Prove that the language L={(M, N): M is a Turing machine and N is a DFA with L(M) =L(N)} is undecidable. You need to derive a reduction from Atm={(M, w)|Turing machine M accepts w} to L. (In layman's terms please, no other theorems involved)
Using the pumping lemma, prove that the language {1^n | n is a prime number} is...
Using the pumping lemma, prove that the language {1^n | n is a prime number} is not regular.
Question 4 Prove that the following language is not regular. ? = { 0 ?1 ?...
Question 4 Prove that the following language is not regular. ? = { 0 ?1 ? | ?, ? ≥ 0, ? ≠ 2? + 1 } Question 5 Prove that the following language is not regular. ? = { ? ∈ { 0, 1, 2} ∗ | #0 (?) + #1 (?) = #2 (?) } where #? (?) denotes the number of occurrences of symbol a in string w.
Define a PDA that accepts language L3 = { anbm | n > 0 and n...
Define a PDA that accepts language L3 = { anbm | n > 0 and n > m }. Implement that PDA in JFLAP. Must use JFLAP
Use simulation to prove that when X ∼ N(0, 1), Z ∼ N(0, 1), Y =...
Use simulation to prove that when X ∼ N(0, 1), Z ∼ N(0, 1), Y = X3 + 10X +Z, we have V ar(X +Y ) = V ar(X) +V ar(Y ) + 2Cov(X, Y ) and V ar(X −Y ) = V ar(X) + V ar(Y ) − 2Cov(X, Y ).
Prove by induction that 14^n + 12^n −5^n is divisible by 7 for all n >0
Prove by induction that 14^n + 12^n −5^n is divisible by 7 for all n >0
In pumping lemma I know how to prove 0^n 1^n is not regular but what changes...
In pumping lemma I know how to prove 0^n 1^n is not regular but what changes when I have 0^n 1^n 2^n (three variables). Do I need to check 6 variations of 0,1 and 2 instead of only 3 in 0^n 1^n? thanks.
Prove a language {wwR0m where wR is the reverse of w and w has m 0’s...
Prove a language {wwR0m where wR is the reverse of w and w has m 0’s } is not context-free using the pumping lemma.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT