In: Math
16 Let ? have a normal distribution with ?(?) = 0.2 and ??(?) = 0.08. a. Find ?(? < 0.36) e. Find ? such that ?(? ≤ ?) = 0.05. b. Find ?(? > 0.16) f. Find ? such that ?(? ≥ ?) = 0.10. c. Find ?(? ≥ 0.60) g. Find ? such that ?(? > ?) = 0.80. d. Find 0.28 < ? ≤ 0.40) h. Find ? such that ?(? < ?) = 0.95.
?(?) = µ = 0.2
??(?) = σ = 0.08.
a. Find P(? < 0.36) =
= P( (X̅-μ)/(σ/√n) < (0.36-0.2)/(0.08/√1) )
= P(z < 2)
Using excel function:
= NORM.S.DIST(2, 1)
= 0.9772
b. Find ?(? > 0.16)
= P( (X-µ)/σ > (0.16-0.2)/0.08)
= P(z > -0.5)
= 1 - P(z < -0.5)
Using excel function:
= 1 - NORM.S.DIST(-0.5, 1)
= 0.6915
c. Find ?(? ≥ 0.60)
= P( (X-µ)/σ > (0.6-0.2)/0.08)
= P(z > 5)
= 1 - P(z < 5)
Using excel function:
= 1 - NORM.S.DIST(5, 1)
= 0
d. Find P(0.28 < ? ≤ 0.40)
= P( (0.28-0.2)/0.08 < (X-µ)/σ < (0.4-0.2)/0.08 )
= P(1 < z < 2.5)
= P(z < 2.5) - P(z < 1)
Using excel function:
= NORM.S.DIST(2.5, 1) - NORM.S.DIST(1, 1)
= 0.1524
e. Find ? such that ?(? ≤ ?) = 0.05.
P(X < b) = 0.05
Z score at p = 0.05 using excel = NORM.S.INV(0.05) = -1.6449
Value of X = µ + z*σ = 0.2 + (-1.6449)*0.08 = 0.0684
f. Find ? such that ?(? ≥ ?) = 0.10.
P(X > b) = 0.1
= 1 - P(X < b) = 0.1
= P(x < b) = 0.9
Z score at p = 0.9 using excel = NORM.S.INV(0.9) = 1.2816
Value of X = µ + z*σ = 0.2 + (1.2816)*0.08 = 0.3025
g. Find ? such that ?(? > ?) = 0.80.
P(x > b) = 0.8
= 1 - P(x < b) = 0.8
= P(x < b) = 0.2
Z score at p = 0.2 using excel = NORM.S.INV(0.2) = -0.8416
Value of X = µ + z*σ = 0.2 + (-0.8416)*0.08 = 0.1327
h. Find ? such that ?(? < ?) = 0.95.
P(x < b) = 0.95
Z score at p = 0.95 using excel = NORM.S.INV(0.95) = 1.6449
Value of X = µ + z*σ = 0.2 + (1.6449)*0.08 = 0.3316
---------------------
if any doubt ask me in comments.