In: Statistics and Probability
3. Use the regression line formula to forecast how much a customer might spend on merchandise if that customer visited the store 13 times in a 6 month period. Consider the average monthly sales of 2014, $1310, as your base to:
* Calculate indices for each month for the next two years.
* Graph a time series plot.
4. In the Data Analysis Toolpak, use Excel's Exponential Smoothing option.
* Apply a damping factor of .5, to your monthly sales data.
*Create a new time series graph that compares the original and the revised monthly sales data.
ORDERS VS. SHIPMENTS | CUSTOMERS IN PAST 6 MONTHS | MONTHLY SALES ($) | ||||||||
Size | # Ordered | # Received | Customer # | # Visits | $ Purchases | Month | $ Sales | |||
Extra Small | 30 | 23 | 1 | 8 | 468 | Jan | 1375 | |||
Small | 50 | 54 | 2 | 6 | 384 | Feb | 1319 | |||
Medium | 85 | 92 | 3 | 8 | 463 | Mar | 1222 | |||
Large | 95 | 91 | 4 | 2 | 189 | Apr | 1328 | |||
Extra Large | 60 | 63 | 5 | 10 | 542 | May | 1493 | |||
2X Large | 45 | 42 | 6 | 4 | 299 | Jun | 1492 | |||
7 | 6 | 345 | Jul | 1489 | ||||||
8 | 2 | 197 | Aug | 1354 | ||||||
9 | 4 | 293 | Sep | 1530 | ||||||
10 | 1 | 119 | Oct | 1483 | ||||||
11 | 3 | 211 | Nov | 1450 | ||||||
12 | 9 | 479 | Dec | 1495 | ||||||
13 | 7 | 430 | Jan | 1545 | ||||||
14 | 7 | 404 | Feb | 1454 | ||||||
15 | 6 | 359 | Mar | 1322 | ||||||
16 | 10 | 544 | Apr | 1492 | ||||||
17 | 9 | 522 | May | 1678 | ||||||
18 | 5 | 327 | Jun | 1645 | ||||||
19 | 6 | 353 | Jul | 1580 | ||||||
20 | 7 | 405 | Aug | 1493 | ||||||
21 | 4 | 289 | Sep | 1719 | ||||||
22 | 7 | 386 | Oct | 1573 | ||||||
23 | 7 | 403 | Nov | 1629 | ||||||
24 | 1 | 146 | Dec | 1680 | ||||||
25 | 7 | 416 | ||||||||
26 | 9 | 485 | ||||||||
27 | 3 | 333 | ||||||||
28 | 7 | 241 | ||||||||
29 | 2 | 391 | ||||||||
30 | 6 | 268 | ||||||||
Use the regression line formula to forecast how much a customer might spend on merchandise if that customer visited the store 13 times in a 6 month period.
Here we have to fit regression of purchase on visit.
We can find regression equation in excel.
steps :
ENTER data into excel sheet --> Data --> Data Analysis --> Regression --> ok --> Input Y Range : Select purchase data --> Input X Range : select number of visits data --> Click on labels --> Output Range : Select one empty cell --> ok
The regression equation is,
Purchase = 136.16 + 38.09*number of visits
Now we have to find Purchase for # of visits = 13
Purchase = 136.16 + 38.09*13 = 632.59
-----------------------------------------------------------------------------------------------------
Consider the average monthly sales of 2014, $1310, as your base to:
Calculate indices for each month for the next two years.
Graph a time series plot.
In the Data Analysis Toolpak, use Excel's Exponential Smoothing option.
Apply a damping factor of .5, to your monthly sales data.
Create a new time series graph that compares the original and the revised monthly sales data.
#N/A |
1375 |
1347 |
1284.5 |
1306.25 |
1399.625 |
1445.813 |
1467.406 |
1410.703 |
1470.352 |
1476.676 |
1463.338 |
1479.169 |
1512.084 |
1483.042 |
1402.521 |
1447.261 |
1562.63 |
1603.815 |
1591.908 |
1542.454 |
1630.727 |
1601.863 |
1615.432 |