Question

In: Math

Let X have a beta distribution with parameters (a,b). Derive a formula for E(X^r) and from...

Let X have a beta distribution with parameters (a,b). Derive a formula for E(X^r) and from this find the mean and variance.

Solutions

Expert Solution

please leave a comment if there is any doubt. All the steps are clearly shown.

Leave an upvote if you like tr solution.


Related Solutions

Let X and Y be jointly normal random variables with parameters E(X) = E(Y ) =...
Let X and Y be jointly normal random variables with parameters E(X) = E(Y ) = 0, Var(X) = Var(Y ) = 1, and Cor(X, Y ) = ρ. For some nonnegative constants a ≥ 0 and b ≥ 0 with a2 + b2 > 0 define W1 = aX + bY and W2 = bX + aY . (a)Show that Cor(W1, W2) ≥ ρ (b)Assume that ρ = 0.1. Are W1 and W2 independent or not? Why? (c)Assume now...
1. Let X have a normal distribution with parameters μ = 50 and σ2 = 144....
1. Let X have a normal distribution with parameters μ = 50 and σ2 = 144. Find the probability that X produces a value between 44 and 62. Use the normal table A7 (be sure to show your work). 2. Let X ~ Exponential( λ ), for some fixed constant λ > 0. That is, fX(x) = λ e-λx = λ exp( -λx ), x > 0, ( fX(x) = 0 otherwise) (a) Create a transformed random variable Y =...
Let X have a binomial distribution with parameters n = 25 and p. Calculate each of...
Let X have a binomial distribution with parameters n = 25 and p. Calculate each of the following probabilities using the normal approximation (with the continuity correction) for the cases p = 0.5, 0.6, and 0.8 and compare to the exact binomial probabilities calculated directly from the formula for b(x; n, p). (Round your answers to four decimal places.) (a) P(15 ≤ X ≤ 20) p P(15 ≤ X ≤ 20) P(14.5 ≤ Normal ≤ 20.5) 0.5 1 2 0.6...
Let X have a binomial distribution with parameters n = 25 and p. Calculate each of...
Let X have a binomial distribution with parameters n = 25 and p. Calculate each of the following probabilities using the normal approximation (with the continuity correction) for the cases p = 0.5, 0.6, and 0.8 and compare to the exact binomial probabilities calculated directly from the formula for b(x; n, p). (Round your answers to four decimal places.) P(20 ≤ X) p P(20 ≤ X) P(19.5 ≤ Normal) 0.5 0.6 0.8
Let X have a binomial distribution with parameters n = 25 and p. Calculate each of...
Let X have a binomial distribution with parameters n = 25 and p. Calculate each of the following probabilities using the normal approximation (with the continuity correction) for the cases p = 0.5, 0.6, and 0.8 and compare to the exact binomial probabilities calculated directly from the formula for b(x; n, p). (Round your answers to four decimal places.) (a) P(15 ≤ X ≤ 20) p P(15 ≤ X ≤ 20) P(14.5 ≤ Normal ≤ 20.5) 0.5 0.6 0.8 (B)P(X...
Suppose that ?!,···, ?" form a random sample from the beta distribution with parameters ? and...
Suppose that ?!,···, ?" form a random sample from the beta distribution with parameters ? and ?. Find the moments estimators for ? and ?. NOTE: Please make the solution as well detailed as possible especially the making of ? and ? the subject of formular respectively
Let X have a Poisson distribution with mean μ . Find E(X(X-1)) and use it to...
Let X have a Poisson distribution with mean μ . Find E(X(X-1)) and use it to prove that μ = σ 2 .
a. If ? ~ ?(?,?), find the distribution (name and parameters) of ?=?X+?. b. If ?~?(0,?),...
a. If ? ~ ?(?,?), find the distribution (name and parameters) of ?=?X+?. b. If ?~?(0,?), find the density of ?=|?|. c. If ? ~ ?amma(?,?), find the distribution (name and parameters) of ?=?X. d. If ? ~ Uniform(0,1), find the density function of ?=√?. e. If Θ ~ Uniform(−?/2,?/2), find cdf and the density function of ?=tan(Θ).
Let f(x) = x - R/x and g(x) = Rx - 1/x a) Derive a Newton...
Let f(x) = x - R/x and g(x) = Rx - 1/x a) Derive a Newton iteration formula for finding a root of f(x) that does not involve 1/xn. To which value does the Newton iterates xn converge? b) Derive a Newton iteration formula for finding a root of g(x) that does not involve 1/xn. To which value does the Newton iterates xn converge?
Let X have a uniform distribution on the interval [A, B]. (a) Obtain an expression for...
Let X have a uniform distribution on the interval [A, B]. (a) Obtain an expression for the (100p)th percentile, x. x = (b) Compute E(X), V(X), and σX. E(X) = V(X) = σX = (c) For n, a positive integer, compute E(Xn). E(Xn) =
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT