Question

In: Statistics and Probability

Let X have a uniform distribution on the interval [A, B]. (a) Obtain an expression for...

Let X have a uniform distribution on the interval

[A, B].

(a)

Obtain an expression for the (100p)th percentile, x.

x =

(b)

Compute

E(X), V(X), and σX.

E(X)

=

V(X)

=

σX

=

(c)

For n, a positive integer, compute

E(Xn).

E(Xn)

=

Solutions

Expert Solution

Answer:

Given that:

Let X have a uniform distribution on the interval [A, B].

a) Obtain an expression for the (100p)th percentile, x.

b) Compute E(X), V(X), and σX.

c) For n, a positive integer, compute E(Xn).


Related Solutions

Let X have a uniform distribution on the interval (7, 13). Find the probability that the...
Let X have a uniform distribution on the interval (7, 13). Find the probability that the sum of 2 independent observations of X is greater than 25.
1. Let X be the uniform distribution on [-1, 1] and let Y be the uniform...
1. Let X be the uniform distribution on [-1, 1] and let Y be the uniform distribution on [-2,2]. a) what are the p.d.f.s of X and Y resp.? b) compute the means of X, Y. Can you use symmetry? c) compute the variance. Which variance is higher?
What is P(X > −1) if (a) X has a Uniform distribution on the interval (−2,...
What is P(X > −1) if (a) X has a Uniform distribution on the interval (−2, 2). (b) if X has a Normal distribution with µ = −2 and σ = 2.What is P(X > −1) if (a) X has a Uniform distribution on the interval (−2, 2). (b) if X has a Normal distribution with µ = −2 and σ = 2.
2. Let X1, ..., Xn be a random sample from a uniform distribution on the interval...
2. Let X1, ..., Xn be a random sample from a uniform distribution on the interval (0, θ) where θ > 0 is a parameter. The prior distribution of the parameter has the pdf f(t) = βαβ/t^(β−1) for α < t < ∞ and zero elsewhere, where α > 0, β > 0. Find the Bayes estimator for θ. Describe the usefulness and the importance of Bayesian estimation. We are assuming that theta = t, but we are unsure if...
2. Let X be a uniform random variable over the interval (0, 1). Let Y =...
2. Let X be a uniform random variable over the interval (0, 1). Let Y = X(1-X). a. Derive the pdf for Y . b. Check the pdf you found in (a) is a pdf. c. Use the pdf you found in (a) to find the mean of Y . d. Compute the mean of Y by using the distribution for X. e. Use the pdf of Y to evaluate P(|x-1/2|<1/8). You cannot use the pdf for X. f. Use...
A random variable X follows a uniform distribution on the interval from 0 to 20. This...
A random variable X follows a uniform distribution on the interval from 0 to 20. This distribution has a mean of 10 and a standard deviation of 5.27. We take a random sample of 50 individuals from this distribution. What is the approximate probability that the sample mean is less than 9.5
Let X and Y be independent and identical uniform distribution on [0, 1]. Let Z=min(X, Y)....
Let X and Y be independent and identical uniform distribution on [0, 1]. Let Z=min(X, Y). Find E[Y-Z]. Hint: condition on whether Y=Z or not. What is the probability Y=Z?
Let X1,X2,...,Xn be a random sample from a uniform distribution on the interval (0,a). Recall that...
Let X1,X2,...,Xn be a random sample from a uniform distribution on the interval (0,a). Recall that the maximum likelihood estimator (MLE) of a is ˆ a = max(Xi). a) Let Y = max(Xi). Use the fact that Y ≤ y if and only if each Xi ≤ y to derive the cumulative distribution function of Y. b) Find the probability density function of Y from cdf. c) Use the obtained pdf to show that MLE for a (ˆ a =...
Let X1,X2,...Xn be a random sample of size n form a uniform distribution on the interval...
Let X1,X2,...Xn be a random sample of size n form a uniform distribution on the interval [θ1,θ2]. Let Y = min (X1,X2,...,Xn). (a) Find the density function for Y. (Hint: find the cdf and then differentiate.) (b) Compute the expectation of Y. (c) Suppose θ1= 0. Use part (b) to give an unbiased estimator for θ2.
Let X be a continuous random variable that has a uniform distribution between 0 and 2...
Let X be a continuous random variable that has a uniform distribution between 0 and 2 and let the cumulative distribution function F(x) = 0.5x if x is between 0 and 2 and let F(x) = 0 if x is not between 0 and 2. Compute 1. the probability that X is between 1.4 and 1.8 2. the probability that X is less than 1.2 3. the probability that X is more than 0.8 4. the expected value of X...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT