In: Statistics and Probability
Let X have a Poisson distribution with mean μ . Find E(X(X-1)) and use it to prove that μ = σ 2 .
Solution
Given E(X) = μ.................................................................................................................................... (1)
Back-up Theory
If a discrete random variable, X, has probability function, p(x), x = x1, x2, …., xn, then
Mean (average) of X = E(X) = µ = Σ{x.p(x)} summed over all possible values of x.........................…. (2)
E(X2) = Σ{x2.p(x)} summed over all possible values of x..........................................................………..(3)
Variance of X = Var(X) = σ2 = E(X2) – {E(X)}2…...................................................................…………..(4)
Mean of a function f(x) of variable X = E{f(X)} = Σf(x).p(x)} summed over all possible values of x........(5)
If a random variable X ~ Poisson (λ), i.e., X has Poisson Distribution with mean λ then
probability mass function (pmf) of X is given by P(X = x) = e – λ.λx/(x!) ....................................………..(6)
where x = 0, 1, 2, ……. , ∞
Now, to work out the solution,
Vide (5) and (6)
E{X(X-1)}
= Σ[x = 0 to ∞]{x(x-1)e – μ. μx/(x!)}
= Σ[x = 0 to ∞][x(x-1). e – μ. μ2μx - 2/{x(x – 1)(x – 2)!}] [μx = μ2μx – 2 and x! = x(x – 1)(x – 2)!]
= μ2Σ[x = 2 to ∞][e – μ. μx - 2/{(x – 2)!}]
[Since the sum is over x, μ2 is a constant and also at x = 0 and 1, (x – 2)! is not defined and hence sum is from 2 to ∞]
= μ2Σ[y = 0 to ∞](e – μ. μy/y!) [just setting y = x - 2]
= μ2 [vide (6), (e – μ. μy/y!) is the pmf of a Poisson variable, Y and hence the sum = 1]
So, we have,
E{X(X-1)} = μ2 ....................................................................................................................................... (7)
Now,
E{X(X-1)}
= E(X2 - X)
= E(X2) – E(X)
= σ2 + {E(X)}2 – E(X) [vide (4)]
= σ2 + μ2 – μ [vide (1)]..................................................................................................................................... (8)
(7) and (8) =>
μ2 = σ2 + μ2 – μ
=> μ = σ2 DONE