Question

In: Mechanical Engineering

An insulated cylinder/piston contains ammonia at 1000 kPa, 120 ◦C. The piston is moved, expanding the...

An insulated cylinder/piston contains ammonia at 1000 kPa, 120 ◦C. The piston is moved, expanding the ammonia in a reversible adiabatic process until the temperature is 0.0 ◦C. During the process, 200 kJ of work is given out by the ammonia. Find the following:
(A) Entropy of final state

  
QUESTION 2

(B) Pressure of final state
  
QUESTION 3

(C) Mass of ammonia

  
QUESTION 4

(D) Volume of initial state

Solutions

Expert Solution

For this question we need to use property table of ammonia.

The properties of ammonia that are enthalpy, entropy, specific volume all corresponding to a defined pressure and temperature.

See below the complete solution.


Related Solutions

Thermodynamics An insulated piston/cylinder device contains ideal CO2 gas at 800 kPa, 300 K, which is...
Thermodynamics An insulated piston/cylinder device contains ideal CO2 gas at 800 kPa, 300 K, which is then compressed to 6 MPa in a reversible adiabatic process. Determine the final temperature and the specific work during the compression process using: (a) Ideal gas tables A.8, (b) Constant specific heats A.5.
1 kg of saturated steam at 1000 kPa is in a piston-cylinder and the massless cylinder...
1 kg of saturated steam at 1000 kPa is in a piston-cylinder and the massless cylinder is held in place by pins. The pins are removed and the system suddenly and adiabatically expands to 5x its original volume before the piston hits a pair of upper pins. The expansion takes place against an atmosphere is 60 kPa. What is the final specific internal energy of the system? The answer will be in kJ/kg.
A spring loaded piston cylinder contains 1.5 kg of air at 27°C and 160 kPa. It...
A spring loaded piston cylinder contains 1.5 kg of air at 27°C and 160 kPa. It is now heated in a process where pressure is linear in volume, P = A + BV, to twice the initial volume where it reaches 900 K. Find the work, the heat transfer and the total entropy generation assuming a source at 900 K. Is this a possible process?
0.75 kg of refrigerant-134a at 120 kPa and 20°C initially fills a piston-cylinder device. Heat is...
0.75 kg of refrigerant-134a at 120 kPa and 20°C initially fills a piston-cylinder device. Heat is now transferred to the refrigerant from a source at 150°C, and the piston which is resting on a set of stops, starts moving when the pressure inside reaches 140 kPa. Heat transfer continues until the temperature reaches 90°C. Assuming the surrounding to be at 25°C and 100 kPa, determine (a) the work done, (b) the heat transfer, (c) the exergy destroyed, and (d) the...
The piston cylinder contains 4 kg of saturated water vapor with 200 kPa. The heat is...
The piston cylinder contains 4 kg of saturated water vapor with 200 kPa. The heat is rejected from the water, and the piston moves from the stops when the pressure reaches 100 kPa. Then the heat is rejected until the total volume decrease to 30% from the initial volume. Determine the work done and heat transfer during this process, show the process on a P-V diagram.
An insulated cylinder fitted with a movable piston to maintain constant pressure initially contains 100 g...
An insulated cylinder fitted with a movable piston to maintain constant pressure initially contains 100 g of ice at -10 C. Heat is supplied to the contents at a constant rate by a 100 W heater. Make a graph showing temperature of the cylinder contents as a function of time starting at t = 0, when the temperature is -10 C and ending when the temperature is 110 C. Let c = 2.0 kJ/kg K for specific heat of ice...
An Insulated piston cylinder device contains 4 L of saturated liquid water at a constant pressure...
An Insulated piston cylinder device contains 4 L of saturated liquid water at a constant pressure of 150 K PA. water is stirred by a paddle wheel while a current of 9 A flows for one hour through a resistor placed in the water. if 80% of the liquid is vaporized doing this constant pressure process and the paddle does 400 kJ of work during this time. determine the resistance of the resistor?
Air of 0.5 kg mass is compressed in a piston-cylinder device from 300 K, 120 kPa...
Air of 0.5 kg mass is compressed in a piston-cylinder device from 300 K, 120 kPa to 500K, 940 kPa. (a) Determine the entropy change in kJ/K using (i) approximate analysis and (ii) exact analysis. (b) Determine the direction of heat transfer (into the device or out of the device).
A gas turbine expands air adiabatically at 1000 kPa and 550 ⁰C to 120 kPa and...
A gas turbine expands air adiabatically at 1000 kPa and 550 ⁰C to 120 kPa and 130⁰C. Air enters the turbine through a 0.25 m 2 opening with an aveage velocity of 45 m/s, and exhausts through a 1 m2 opening. Assume the air is ideal gas with constant specific heats. Take the constant pressure specific heat and gas constant of air as Cp= 1.05 kJ/(kg K) and R=0.287 kJ/(kg K), respectively. Determine; (a) the mass flow rate of air...
A piston-cylinder device initially contains 75 g of saturated water vapor at 310 kPa . A...
A piston-cylinder device initially contains 75 g of saturated water vapor at 310 kPa . A resistance heater is operated within the cylinder with a current of 0.4 A from a 200 Vsource until the volume doubles. At the same time a heat loss of 2 kJ occurs. a.Determine the final temperature (T2). b. Determine the duration of the process. c. What-if scenario: What is the final temperature if the piston-cylinder device initially contains saturated liquid water?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT